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I. Backpropagation 

1. Log (ln) and Exp Operations 

𝑒0 = 1 , 𝑒−∞ → 0, ln 1 = 0, ln 𝑒 = 1. 

𝑒𝑥 ⋅ 𝑒𝑦 = 𝑒𝑥+𝑦  ln(𝑥 ⋅ 𝑦) = ln 𝑥 + ln 𝑦  

𝑒𝑥/𝑒𝑦 = 𝑒𝑥−𝑦  ln(𝑥/𝑦) = ln 𝑥 − ln 𝑦  

(𝑒𝑥)𝑦 = 𝑒𝑥𝑦  ln(𝑥𝑦) = 𝑦 ln 𝑥  

𝑒ln 𝑥 = 𝑥  ln(𝑒𝑥) = 𝑥  
 

II. Log-Linear Models 

1. Exponential Family 

𝑝(𝑥|𝜃) =
1

𝑍(𝜃)
ℎ(𝑥)𝑒𝜃⋅𝜙(𝑥), where 𝑍(𝜃) is 

partition function, ℎ(𝑥) determines supports, 

𝜃 is canonical parameters, 𝜙(𝑥) is sufficient 

statistics, finite.  

2. Log-Linear Models 

𝑝(𝑦|𝑥, 𝜃) =
1

𝑍(𝜃)
𝑒𝜃⋅𝑓(𝑥,𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 

feature 𝑓: 𝑋 × 𝑌 ∈ ℝ𝐾, parameters 𝜃 ∈ ℝ𝐾. 

𝑍(𝜃) = ∑ 𝑒𝜃⋅𝑓(𝑥,𝑦′)
𝑦′∈𝑌 , 𝑂(|𝑌|) computation. 

3. Softmax 

softmax(ℎ, 𝑦, 𝑇) =
𝑒ℎ𝑦/𝑇

∑ 𝑒
ℎ

𝑦′/𝑇

𝑦′∈𝑌

, ℎ𝑦 = 𝜃 ⋅ 𝑓(𝑥, 𝑦), 

temperature 𝑇 ∈ ℝ, 𝑇 → ∞ uniform, 𝑇 → 0 

argmax (annealing). 

III. Multilayer Perceptron (MLP) 

1. Multilayer Perceptron (MLP) 

ℎ(𝑁) = 𝜎(𝑁)(𝑊(𝑁) … 𝜎(2)(𝑊(2)𝜎(1)(𝑊(1)𝑒(𝑥)))), 

ℎ(𝑁) ∈ ℝ|𝑌|, activation 𝜎(𝑖), 𝑊(𝑁) ∈ ℝ|𝑌|⋅𝑑𝑁, 

𝑊(1) ∈ ℝ𝑑1⋅𝑑1, encoding 𝑒(𝑥) ∈ ℝ𝑑1. Then, 

MLP is 𝑝(𝑦|𝑥) =
exp(ℎ𝑦)

∑ exp(ℎ𝑦′) 𝑦′∈𝑌

= softmax(ℎ(𝑁), 𝑦). 

MLP is a log-linear model, where we also 

learn the feature 𝑓. Final layer is a softmax. 

2. XOR Problem 𝑦 = 𝛼1𝑥1 + 𝛼2𝑥2 + 𝑏  
Not linearly separable (a 

single-layer MLP can’t 

solve). Use activations: 

tanh(𝑥) = 2𝜎(2𝑥) − 1 or 

sigmoid 𝜎(𝑥) =
1

1+exp(𝑥)
. 

𝑥1 𝑥2 𝑦 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

IV. Language Models: n-grams and RNNs 

1. Language Modeling 

Alphabet Σ is a finite, non-empty set of 

symbols. A string over Σ is finite sequence of 

alphabet symbols. Kleene closure Σ∗ is the 

set of all possible strings. 

2. Globally Normalized Language Models 

𝑝(𝒚) =
1

𝑍
𝑒score(𝒚), 𝑍 = ∑ 𝑒score(𝒚′)

𝑦′∈Σ∗  is 

the normalization constant, infinite sum, not 

always computable; score: 𝒚 → ℝ. 

3. Locally Normalized Language Models 

With 𝒚 = 𝑦1𝑦2 … 𝑦𝑁 and 𝒚<𝑁 = 𝑦1𝑦2 … 𝑦𝑁−1, 
𝑝(𝒚) = 𝑝(𝑦1|BOS)𝑝(𝑦2|BOS 𝑦1) … 𝑝(𝑦𝑁|𝒚<𝑁)𝑝(𝐸𝑂𝑆|𝑦). 

- Local normalization guarantees the 

normalization constant to be 1.  

- The sum of the probability of all children 

given their parent is 1. 

- Every node has an EOS as a descendant. 

4. Tightness 

- A locally normalized LM that sums to 1 is 

called tight.  

- A non-tight loses probability to infinitely 

long structures - sequence models. 

- To ensure tightness, force 𝑝(EOS|parent) >
𝜉 > 0 for every parent node with constant 𝜉. 

5. n-gram Language Models 

Assumption: limit the context to the previous 

𝒏 − 𝟏 symbols. A finite number of histories. 

𝑝(𝑦𝑡|𝒚<𝑡) = 𝑝(𝑦𝑡|𝑦𝑡−𝑛+1 … 𝑦𝑡−1), 𝒚 ∈ Σ∗, 
𝑝(𝒚) = 𝑝(EOS|𝑦𝑡−𝑛+2 … 𝑦𝑡) ∏ 𝑝(𝑦𝑡|𝑦𝑡−𝑛+1 … 𝑦𝑡−1)𝑇

𝑡=1 . 
6. Recurrent Neural Network (RNN) 

𝑝(𝑦𝑡|𝒚<𝑡) =
𝑒𝑢(𝑦𝑡)⋅ℎ𝑡

∑ 𝑒𝑢(𝑦𝑡
′)⋅ℎ𝑡

𝑦′∈Σ̃

, 𝑢(𝑦𝑡) 

is word embedding - 

individual symbols, ℎ𝑡 is 

context embedding - 

summarizes 𝑛 − 1 symbols, 𝑓 is RNN type. 

7. Vanilla / Elman RNN 

Elman: 𝒉𝑡 = 𝜎(𝑼𝒉𝑡−1 + 𝑽𝒖(𝑦𝑡−1) + 𝒃ℎ)  

Variant: 𝒉𝑡 = 𝜎(𝑾[𝒉𝑡−1; 𝒖(𝑦𝑡−1)]) 

𝑾 ∈ ℝ𝑑×2𝑑, 𝑼, 𝑽 ∈ ℝ𝑑×𝑑 are recurrence 

matrices, 𝜎 is a non-linearity as in an MLP. 

- Trained with backpropagation through time 

(temporal hidden-state dependencies). 

- Each timestamp yields an output and a 

recurrent connection. 

- Parameters are shared across timestamps. 

- Unroll RNN first, then backpropagate. 

8. LSTM, GRU, Vanishing / Exploding 

Vanishing gradient - update < 1, exploding 

gradient - update > 1. LSTM and GRU can 

help solve the vanishing gradient problem 

as they have cell state / gate update with 

additive update. ReLU also works. Sigmoid 

and Tanh can lead to vanishing gradient. 

V. Part-of-speech Tagging with CRFs 

1. Conditional Random Fields (CRF) 

𝑝(𝒕|𝒘) =
exp{score(𝒕,𝒘)}

∑ exp{score(𝒕′,𝒘)}
𝒕′∈𝑇𝑁

, score(𝒕, 𝒘) =

∑ score(⟨𝑡𝑛−1, 𝑡𝑛⟩, 𝒘)𝑁
𝑛=1 , 𝒕 is part of speech 

tagging, 𝒘 is an input sentence, 𝑁 = |𝒘|. 
∑ exp{score(⟨𝑡0, 𝑡1⟩, 𝒘)} × (∑ exp{score(⟨𝑡1, 𝑡2⟩, 𝒘)}𝑡2∈𝑇 ×𝑡1∈𝑇

… × (∑ exp{score(⟨𝑡𝑁−1, 𝑡𝑁⟩, 𝒘)}𝑡𝑁∈𝑇 )). Score can be 

chosen, consisting of transition (how likely 

𝑡2 follows 𝑡1) and emission (how likely 

current word is 𝑡2). Combinatorial assumption 

2. Viterbi Algorithm (for shortest path) 

 
Replacing max with sum is Backward Algo. 

The 𝑏 in Viterbi is the backpointer for the best 

scoring path. Overall complexity 𝑂(𝑁|𝑇|2). 

Can generalize the algorithm with semirings. 

3. Semirings 

A semiring 𝑅 = (𝐴,⊕,⊗, 0̅, 1̅) must satisfy: 

- (𝐴,⊕, 0̅) is a commutative monoid; 

- (𝐴,⊗, 1̅) is a monoid; 

- ⊗ distributes over ⊕: ∀𝑎, 𝑏, 𝑐 ∈ 𝐴, 
(𝑎 ⊕ 𝑏) ⊗ 𝑐 = (𝑎 ⊗ 𝑐) ⊕ (𝑏 ⊗ 𝑐), 𝑐 ⊗
(𝑎 ⊕ 𝑏) = (𝑐 ⊗ 𝑎) ⊕ (𝑐 ⊗ 𝑏); 

- 0̅ is annihilator of ⊗: 0̅ ⊗ 𝑎 = 𝑎 ⊗ 0̅ = 0̅.  

VI. Context-Free Parsing with CKY 

1. Context-Free Grammar (CFG) 

A context-free grammar 𝐺 is a quadruple 

⟨𝒩, 𝑆, 𝜀, ℛ⟩ consisting of: 

- A finite set of non-terminal symbols 𝒩; 

- A distinguished start non-terminal symbol 𝑆; 

- An alphabet of terminal symbols Σ; 

- A set of production rules ℛ of the form 𝑁 →
𝛼, where 𝑁 ∈ 𝒩 and 𝛼 ∈ (𝒩 ∪ Σ)∗. 

2. Probabilistic CFGs (PCFG) 

𝑝(tree) = ∏ 𝑝(𝑁 → 𝛼)𝑁∈𝒩,𝛼∈(𝒩∪Σ)∗ . PCFGs 

are locally normalized. For all rules with the 

same left-hand side, e.g., 𝑁 → 𝛼1, … , 𝑁 → 𝛼𝑘, 

the sum of probability must be 1. 

3. Weighted CFGs (WCFG) 

exp{score(tree)} = ∏ exp{score(𝑁 → 𝛼)}𝑁∈𝒩,𝛼∈(𝒩∪Σ)∗ . 

WCFGs are globally normalized, i.e., 𝑝(𝒕) =
1

𝑍
∏ exp{𝑠𝑐𝑜𝑟𝑒(𝑟)}𝑟∈𝒕 , 𝑍 = ∑ ∏ exp{𝑠𝑐𝑜𝑟𝑒(𝑟′)}𝑟′∈𝒕𝑡′∈𝑇 , 𝑇 

is countably infinite. 

4. Chomsky Normal Form (CNF) 

A grammar is in CNF is all productions have 

the form: (1) 𝑁1 → 𝑁2𝑁3, 𝑁1,2,3 are non-

terminals; (2) 𝑁 → 𝛼, 𝑁 is a non-terminal, 

and 𝛼 is a terminal; (3) 𝑆 → 𝜀, 𝑆 is start 

symbol and 𝜀 is empty string. With CNF, we 

can partition the WCFG into non-terminal 

production and terminal production. 

5. Cocke-Kasami-Younger (CKY) 

 
Replacing ⊕ with + and ⊗ with × will give  

us the weighted CKY. Complexity 𝑂(𝑁3|ℛ|), 

𝑁 is sentence length, |ℛ| is rule set size. 

VII. Dependency Parsing with MTT 

1. Dependency Trees 

(1) Projective: no crossing arcs, related to 

constituency. (2) Non-projective: crossing 

arcs, related to discontinuous constituency. 

2. Distributions Over Non-projective Trees 

𝑝(𝒕|𝒘) =
1

𝑍
𝑒score(𝒕,𝒘), 𝑍 = ∑ 𝑒score(𝒕′,𝒘)

𝒕′∈𝑇(𝒘) , score 

presents the compatibility of the parse 𝒕 with 

sentence 𝒘, 𝑇(𝒘) is all admissible parses of 

sentence 𝒘, 𝑁 = |𝒘| input sentence length. 

Computing 𝑍 requires 𝑂(𝑁𝑁), spanning trees 

𝑁𝑁−2, root constraint (𝑁 − 1)𝑁−2. 𝑁𝑁−1 for 

directed graphs, e.g., dependency parsing. 

3. Edge-factored Assumption 

score(𝒕, 𝒘) = ∑ score(𝑖 → 𝑗, 𝒘)(𝑖→𝑗)∈𝒕 + score(𝑟, 𝒘), 

where 𝑟 is the root according to the tree 𝒕. 

Edges are the first part of the sum. Probability 

𝑝(𝒕|𝒘) =
1

𝑍
∏ 𝑒score(𝑖,𝑗,𝒘)

(𝑖→𝑗)∈𝒕 𝑒score(𝑟,𝒘), 𝑍 =

∑ ∏ 𝑒score(𝑖,𝑗,𝒘)
(𝑖→𝑗)∈𝒕′ 𝑒score(𝑟,𝒘)

𝒕′∈𝑇(𝒘) . 

4. Matrix-Tree Theorem (MTT) 𝑂(𝑁3) 

Let 𝐴𝑖𝑗 = 𝑒score(𝑖,𝑗,𝒘), 𝜌𝑗 = 𝑒score(𝑗,𝒘), 𝑁𝑇(𝐺) = |𝐿̂𝑖|. 

(1) Graph Laplacian: 𝐿𝑖𝑗 = −𝐴𝑖𝑗 if 𝑖 ≠ 𝑗, 

∑ 𝐴𝑘𝑗𝑘≠𝑖  otherwise. (2) Modified Graph 

Laplacian: 𝜌𝑗 if 𝑖 = 1 (root), −𝐴𝑖𝑗 if 𝑖 ≠ 𝑗, 

∑ 𝐴𝑘𝑗𝑘≠𝑖  otherwise. Now 𝑍 = |𝐿| = det(𝐿). 

5. Chu-Liu-Edmonds Algorithm 𝑂(𝑁3) 

To find the best parse of a sentence 

(maximum-weight spanning tree - MST), 

argmax𝒕∈𝑇 ∑ score(𝑖, 𝑗, 𝒘)(𝑖→𝑗)∈𝒕 . 

 
For a cycle 𝐶, we have (1) exit edges 

emanating from 𝐶, (2) enter edges pointing 

to 𝐶, (3) dead edges inside or both ends in 𝐶, 

(4) external edges are outside 𝐶. 

VIII. Semantic Parsing with CCG 

1. Principle of Compositionality 

The meaning of a complex express is a 

function of the meanings of that expression’s 

constituent parts. 

2. Lambda Calculus 

If 𝑀 is a term, 𝑥 is a variable, 𝜆𝑥. 𝑀 is a term, 

which takes 𝑥 as input and produces 𝑀. 

Scope: ((𝜆𝑥. 𝜆𝑦. (𝑥((𝜆𝑥. 𝑥 𝑥)𝑦))𝜆𝑥. 𝑥)𝑧). 

(1) 𝜶-conversion 

Renaming a variable in a lambda term, 

together with all occurrences, e.g., 

𝜆𝑥. 𝜆𝑦(𝑥((𝜆𝑥. 𝑥 𝑥)𝑦)) → 𝜆𝑧. 𝜆𝑦(𝑧((𝜆𝑥. 𝑥 𝑧)𝑦)). 

(2) 𝜷-reduction 

Applying one lambda term to another, e.g., 

𝜆𝑦. (𝑧((𝜆𝑥. 𝑥 𝑧)𝑦)) → 𝜆𝑦. (𝑧(𝑧 𝑦)). 

Warning: repeatedly applying 𝛽-reductions 

may not terminate (𝐹 𝐹) → (𝜆𝑥. ((𝑥 𝑥)𝑥)𝐹) →
((𝐹 𝐹)𝐹)  → (((𝐹 𝐹)𝐹)𝐹) → ⋯. 

(3) Logical constants 

- Objects & relations: ALEX, MOSKVA, 

LIKES, TEACHER, etc. 

- Arity of relations: LIKES(𝑥, 𝑦) has arity 2, 

TEACHER(𝑥) has arity 1, etc. 

(4) Variables: uppercase (𝑃, 𝑄, etc.) for 

relations, lowercase (𝑥, 𝑦, etc.) for objects. 

(5) Literals: Applying relations to objects or 

variables, e.g., LIKES(LEE, BOB), 

TEACHER(BOB), LIKES(LEE, 𝑦), P(LEE, 

BOB), P(𝑥, 𝑦), etc. 

Note: With these we can construct logical 

terms with logical connectives and 

quantifiers. Can also form lambda terms. 

3. Combinatory Categorical Grammars 

Use CCG to deal with context-sensitive 

grammars and cross serial dependencies.  

 
(1) Definition: A CCG is ⟨𝑉𝑇 , 𝑉𝑁, 𝑆, 𝑓, 𝑅⟩, 
where 𝑉𝑇 is finite set of terminals (lexicon), 

𝑉𝑁 is finite site of non-terminals (atomic 

categories), 𝑆 ∈ 𝑉𝑁 a distinguished category, 

𝑓 maps 𝑉𝑇 ∪ {𝜀} to finite subsets of 𝐶(𝑉𝑁), 

set of categories, 𝑅 is combinatory rules.  

(2) Combinatory rules: forward (𝑥/𝑦) is 

𝑦 → 𝑥, backward 𝑦 is (𝑥\𝑦) → 𝑥. 

Note: CCG in higher-order composition 

rules, each rule may give infinite instances. 

CFGs have a finite set of non-terminals. 

4. Parsing CCGs (CKY style) 

One inference rule for every forward rule 
[𝑋/𝑌,𝑖,𝑗][𝑌𝛽,𝑗,𝑘]

𝑋𝛽,𝑖,𝑘
, 𝑋/𝑌 𝑌𝛽 ⇒ 𝑋𝛽. Axioms have 

the form [𝑋, 𝑖, 𝑖 + 1] for each input 𝑤𝑖+1. 

 
IX. Machine Translation Transformers 

1. Sequence-to-sequence Models 

Model the probability distribution 𝑝(𝒚|𝒙) 

over all strings 𝒚 ∈ 𝑌 for some sentence 𝒙, 

i.e., what is the most likely translation 𝒚 of 

string 𝒙. Maximizing the log-likelihood 

argmax𝜽 ∑ log 𝑝(𝒚(𝑖)|𝒙(𝑖); 𝜽)𝑁
𝑖=1 =

argmax𝜽 ∑ ∑ log 𝑝(𝑦𝑡
(𝑖)

|𝒙(𝑖), 𝒚<𝑡
(𝑖)

; 𝜽)
|𝒚(𝑖)|

𝑡=1
𝑁
𝑖=1 . 

 
2. The Attention Mechanism 

(1) Definition 

def ViterbiAlgorithm(𝒘,𝑇,𝑁): 
  for 𝑡𝑁−1 ∈ 𝑇: 
    𝑣(𝒘, 𝑡𝑁−1, 𝑁 − 1) ← 𝑒score(⟨𝑡𝑁−1,EOS⟩,𝒘) 
  for 𝑛 ∈ 𝑁 − 2, … ,1: 
    for 𝑡𝑛 ∈ 𝑇: 
      𝑣(𝒘, 𝑡𝑛, 𝑛) ← max

𝑡𝑛+1∈𝑇
𝑒score(⟨𝑡𝑛,𝑡𝑛+1⟩,𝒘) × 𝑣(𝒘, 𝑡𝑛+1 , 𝑛 + 1) 

      𝑏(𝑡𝑛, 𝑛) ← argmax
𝑡𝑛+1∈𝑇

𝑒score(⟨𝑡𝑛,𝑡𝑛+1⟩,𝒘) × 𝑣(𝒘, 𝑡𝑛+1, 𝑛 + 1) 

 𝑣(𝒘, BOS, 0) ← max
𝑡1∈𝑇

(𝑣(𝒘, 𝐵𝑂𝑆, 0), 𝑒score(⟨𝐵𝑂𝑆,𝑡1⟩,𝒘) × 𝑣(𝒘, 𝑡1 , 1)) 

 𝑏(BOS, 0) ← argmax
𝑡1∈𝑇

(𝑣(𝒘, 𝐵𝑂𝑆, 0), 𝑒score(⟨𝐵𝑂𝑆,𝑡1⟩,𝒘) × 𝑣(𝒘, 𝑡1 , 1)) 

 for 𝑛 ∈ 1, … , 𝑁: 
   𝑡𝑛 ← 𝑏(𝑡𝑛−1, 𝑛 − 1) 
 return 𝑡1:𝑁, 𝑣(𝒘, BOS, 0) 

 

def SemiringCKY(𝒔,⟨𝒩, 𝑆, Σ, ℛ⟩,score): 
  𝑁 ← |𝒔| 
  chart ← 𝟎 
  for 𝑛 = 1, … , 𝑁: 
    for 𝑋 → 𝒔𝑛 ∈ ℛ: 
      chart[𝑛, 𝑛 + 1, 𝑋] ⊕= 𝑒score(𝑋→𝒔𝑛)  
  for span = 2, … , 𝑁: 
    for 𝑖 = 1, … , 𝑁 − span + 1: 
      𝑘 ← 𝑖 + span  
      for 𝑗 = 𝑖 + 1, … , 𝑘 − 1: 

    for 𝑋 → 𝑌 𝑍 ∈ ℛ: 
      chart[𝑛, 𝑛 + 1, 𝑋] ⊕= 𝑒score(𝑋→𝑌 𝑍) ⊗ chart[𝑖, 𝑗, 𝑌] ⊗

chart[𝑗, 𝑘, 𝑍] 
  return 𝑐ℎ𝑎𝑟𝑡[𝑛, 𝑁 + 1, 𝑆] 

 

def MST(𝐺): 
  if CYCLE IN GREEDY(𝐺): 
    return 
EXPAND(CONSTRAIN(MST(CONTRACT(𝐺,CYCLE)))) 
 
def CONSTRAIN(𝐺): 
  if NUMBER OF ROOT EDGES(GREEDY(𝐺)) > 1: 
    𝑒 ← ROOT EDGE TO REMOVE (𝐺) 

if CYCLE IN GREEDY(𝐺 − 𝑒): 
  return CONSTRAIN(CONTRACT(𝐺,CYCLE)) 
else: 
  return CONSTRAIN(𝐺 − 𝑒) 

  else: 
    return GREEDY(𝐺) 

 

CKY requires CNF 
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The attention mechanism enables a model to 

attend to information from different time 

steps, 𝜶 = softmax(score(𝒒, 𝐾)), 𝒄 = 𝜶𝑉, 

where 𝒒 is the query, 𝐾 is the keys, 𝑉 is the 

values, 𝒄 is the resulting context. 

(2) Variations of Attention Mechanisms 

(i) Cross-attention Without projection: 𝒒𝒕 =

𝒉𝒕
𝒅; 𝒌𝒊 = 𝒗𝒊 = 𝒉𝒊

𝒆, 𝑖 ∈ 1 ⋯ 𝑛; 𝐾 = 𝑉 = 𝐻𝑒. 

With linear projection (𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣 ∈ ℝ𝑑×𝑑): 

𝒒𝒕 = 𝒉𝒕
𝒅 × 𝑊𝑞

𝑑; 𝒌𝒊 = 𝒉𝒊
𝒆 × 𝑊𝑘

𝑒; 𝒗𝒊 = 𝒉𝒊
𝒆 ×

𝑊𝑣
𝑒; 𝐾 = 𝐻𝑒 × 𝑊𝑘

𝑒; 𝑉 = 𝐻𝑒 × 𝑊𝑣
𝑒; 𝑖 ∈ 1 ⋯ 𝑛 

(ii) Self-attention Without projection: 𝒒𝒕 =
𝒉𝒕

𝒔; 𝒌𝒊 = 𝒗𝒊 = 𝒉𝒊
𝒔, 𝑖 ∈ 1 ⋯ 𝑛/𝑚; 𝐾 = 𝑉 =

𝐻𝑠. With linear projection: 𝒒𝒕 = 𝒉𝒕
𝒔 × 𝑊𝑞

𝑠; 

𝒌𝒊 = 𝒉𝒊
𝒔 × 𝑊𝑘

𝑠; 𝒗𝒊 = 𝒉𝒊
𝒔 × 𝑊𝑣

𝑠; 𝐾 = 𝐻𝑠 ×
𝑊𝑘

𝑠; 𝑉 = 𝐻𝑠 × 𝑊𝑣
𝑠; 𝑖 ∈ 1 ⋯ 𝑛; 𝑠 ∈ {𝑒, 𝑑}. 

Note: 𝑛 is input length; 𝑚 is output length (in 

self-attention decoder); 𝒉 is the hidden state, 

𝑒 is encoder, 𝑑 is decoder; 𝒒𝒕, 𝒌𝒊, 𝒗𝒊, 𝒉𝒊
𝒆, 𝒉𝒕

𝒅 ∈
ℝ1×𝑑; 𝐻𝑒 ∈ ℝ𝑛×𝑑; 𝐻𝑑 ∈ ℝ𝑚×𝑑. 

3. Transformer 

A: word embeddings (e.g., 

one-hot encoding). 

B: positional encoding, 

same dimension as input, 

can be learned or 

fixed. sin 𝑝/
𝐶𝑖/𝑑 if 𝑖 =
2𝑘, cos 𝑝/
𝐶𝑖/𝑑 if 𝑖 =
2𝑘 + 1 

C: self-

attention 

D: masked 

self-

attention, in 

decoder, position 

after current time stamp cannot be attended. 

E: cross-attention, allows decoder to attend 

encoder. 

F: feed-forward layers, linear projections 

followed by non-linearities. 

G: residual connection, in both encoder and 

decoder, passes input to next layer without 

transformation, help with vanishing gradients. 

H: layer normalization, mean 0, variance 1. 

4. Decoding Strategies 

𝑂(|Σ|𝑛) due to non-markovian structure 𝒚<𝑡.  

(1) Beam search (TopK): Pruned breadth-

first search where the breadth is limited to 

size 𝑘. Maximum of 𝑘 paths kept at each time 

step. Greedy, no guarantee. 

(2) Sampling (TopP): Sample according to 

the conditional distribution 𝑝(𝒚|𝒙) at each 

time step. Sample only from top items that 

cover p% of probability mass. 

X. Transliteration with WFSTs 

1. Finite-State Automata 

Determines if a string is an element of a given 

language. A FSA 𝒜 is a 5-tuple (Σ, 𝑄, 𝐼, 𝐹, 𝛿) 

where Σ is alphabet, 𝑄 is a finite set of 

states, 𝐼 ⊆ 𝑄 is the set of initial states, 𝐹 ⊆
𝑄 is the set of final or accepting states, 𝛿 ⊆
𝑄 × (Σ ∪ {𝜀}) × 𝑄 is a finite multi-set. 

Unambiguous if for every string 𝑠 ∈ Σ∗ there 

is at most 1 accepting path for that 𝑠.  

Note: Vertices are the states in 𝑄, edges are 

transitions in 𝛿, edge labels correspond to 

input symbol in Σ. 

2. Weighted Finite-State Automata 

A WFSA 𝒜 over a 

semiring 𝒲 = (𝕂,⊕
,⊗, 𝟎, 𝟏) is  

(Σ, 𝑄, 𝐼, 𝐹, 𝛿, 𝜆, 𝜌) 

where in addition 

to FSA, 𝛿 ⊆ 𝑄 × (Σ ∪
{𝜀}) × 𝕂 × 𝑄 is a finite multi-set of 

transitions, 𝜆: 𝑄 → 𝕂 an initial weighting 

function over 𝑄, 𝜌: 𝑄 → 𝕂 a final weighting 

function over 𝑄, 𝐼 = {𝑞 ∈ 𝑄|𝜆(𝑞) ≠ 𝟎} and 

𝐹 = {𝑞 ∈ 𝑄|𝜌(𝑞) ≠ 𝟎}. 

3. Path 

A path 𝝅 is an element of 𝛿∗ with consecutive 

transitions (𝑞1 →⋅/⋅ 𝑞2, ⋯ , 𝑞𝑛−1 →⋅/⋅ 𝑞𝑁). 

𝑝(𝝅) = 𝑞1 is the origin, 𝑛(𝝅) = 𝑞𝑁 is the 

destination. The length is the number of 

transitions |𝝅|. The yield of a path is the 

concatenation of the input symbols on the 

edges along the path 𝑠(𝝅). A path 𝝅 is a cycle 

if the starting and ending states are the same. 

4. Weighted Finite-State Transducers 

A WFST 𝒯 over a semiring 𝒲 = (𝕂,⊕,⊗
, 𝟎, 𝟏) is (Σ, Ω, 𝑄, 𝐼, 𝐹, 𝛿, 𝜆, 𝜌) where Σ is 

finite input alphabet, Ω is finite output 

alphabet, 𝑄 is finite set of states, 𝐼 ⊆ 𝑄 is 

initial states, 𝐹 ⊆ 𝑄 is final states, 𝛿 ⊆
𝑄 × (Σ ∪ {𝜀}) × (Ω ∪ {𝜀}) × 𝕂 × 𝑄 finite 

multi-set of transitions, 𝜆: 𝑄 → 𝕂 initial 

weighting function over 𝑄, 𝜌: 𝑄 → 𝕂 final 

weighting function over 𝑄. 

 
5. Composition of WFSTs 

Composition 𝒯1 ∘ 𝒯2 of two WFSTs 𝒯1 =
(Σ, Ω, 𝑄1, 𝐼1, 𝐹1, 𝛿1, 𝜆1, 𝜌1) and 𝒯2 =
(Σ, Θ, 𝑄2, 𝐼2, 𝐹2, 𝛿2, 𝜆2, 𝜌2) is the WFST 𝒯 =
(Σ, Θ, 𝑄, 𝐼, 𝐹, 𝛿, 𝜆, 𝜌) such that 𝒯(𝒙, 𝒚) =
⊕𝒛∈Ω∗ 𝒯1(𝒙, 𝒚) ⊗ 𝒯2(𝒛, 𝒚). 

6. Pathsum 

𝒜 be a WFSA over a semiring 𝒲 = (𝕂,⊕,⊗
, 𝟎, 𝟏). The pathsum in 𝒜 is defined as 

𝑍(𝒜) =⊕𝝅∈Π(𝒜) 𝑤(𝝅). Pathsum between 

two states 𝑞𝑛, 𝑞𝑚 ∈ 𝑄 as 𝑍(𝑞𝑛, 𝑞𝑚) =
⊕𝝅∈Π(𝑞𝑛,𝑞𝑚) 𝑤(𝝅). Inner path weight 𝑤𝐼(𝜋) 

of a path 𝝅 = 𝑞0 →𝑎1/𝑤1 𝑞1 ⋯ 𝑞𝑁−1 →𝑎𝑁/𝑤𝑁 𝑞𝑁 

is 𝑤𝐼(𝝅) =⊕𝑛=1
𝑁 𝑤𝑛. 𝑤(𝝅) is the path weight 

as 𝑤(𝝅) = 𝜆(𝑝(𝝅)) ⊗ 𝑤𝐼(𝝅) × 𝜌(𝑛(𝝅)). 

7. WFST Log-Linear Model 

𝑝(𝒚|𝒙) =
1

𝑍
𝑒{score(𝒚,𝒛)} =

1

𝑍
∑ 𝑒∑ score(𝜏𝑛)

|𝝅|
𝑛=1𝝅∈Π(𝒙,𝒚) , 

where  𝑍 = ∑ 𝑒
{score(𝒚′,𝒛)}

𝑦′∈Ω∗ , needs algorithms.  

8. Lehmann’s Algorithm 𝑂(𝑁3) 

 
9. Floyd-Warshall Algorithm 𝑂(𝑁3) 

 
10. Semiring Matrix Multiplication 𝑂(𝑁3) 

 
11. Floyd-Warshall Matrix Multiplication 

 
XI. Axes of Modeling 

1. Maximum Likelihood Estimation 

𝐿(𝜃) = − ∑ log 𝑝(𝑦𝑖|𝑥𝑖 , 𝜃)𝑖≤𝑛 , the negative 

log-likelihood. The MLE minimizes 𝔼[(𝜃 −
𝜃∗)2] as 𝑛 → ∞. Can yield the lowest KL-

divergence. Fast. Warning: MLE can only be 

computed for probabilistic models, and if 𝑁 is 

not sufficient, high variance and overfitting. 

2. Parameter Estimation (MLE examples) 

Gaussian: 𝑝(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎2
𝑒−

1

2
(

𝑥−𝜇

𝜎
)

2

, 𝐿𝐿 =

−𝑁 log(𝜎) −
𝑁

2
log(2𝜋) −

1

𝜎2
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 , 
𝜕𝐿𝐿

𝜕𝜇
→ 𝜇 =

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 , 

𝜕𝐿𝐿

𝜕𝜎
→ 𝜎 = √

1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 . Poisson: 

𝐿𝐿 = −𝑛𝜃 + ∑ 𝑥𝑖
𝑁
𝑖=1 ⋅ log(𝜃) − ∑ log(𝑥𝑖!)

𝑁
𝑖=1 , 

𝜕𝐿𝐿

𝜕𝜃
→

𝜃 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 . 

3. (Weight) Regularization 

- Lasso: ℒ𝑙1
(𝜃) = ℒ(𝜃) + 𝜆||𝜃||1, makes 

many coefficients to be 0. No closed form 

solution. 

- Ridge (L2): ℒ𝑙2
(𝜃) = ℒ(𝜃) + 𝜆||𝜃||2

2, 

shrinks parameters to small non-zero values. 

Closed form: 𝛽 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌. 

4. Bayesian Inference and Bayes Rule 

Bayesian inference involves a prior, 

likelihood, and posterior 𝑝(𝜃|𝑥1, … , 𝑥𝑛) ∝
𝑝(𝑥1, … , 𝑥𝑛|𝜃) ⋅ 𝑝(𝜃). Bayes rule: 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
. Note: When having a strong prior, 

Bayesian is preferred over MLE. 

5. Model Evaluation 

Loss functions can be directly optimized 

during training; evaluation metrics may 

include any aspect of the model. 

- Curve scores: AUC-ROC, AUC-PRC 

(precision-recall curve).  

- Confusion matrix: precision = 

TP/Predicted condition positive (PCP), recall 

= TP/CP, accuracy = TP + TN / N, etc. 

- 𝑭𝜷 score: 𝐹𝛽 = (1 + 𝛽2)
precision⋅recall

𝛽2precision+recall
 

6. Hypothesis Testing (example) 

Given 𝑋1 ⋯ 𝑋𝑛 ∼ 𝑁(𝜃, 1) i.i.d., test 𝐻0: 𝜃 =

0, 𝐻1: 𝜃 = 1. 𝑅 = {(𝑥1 ⋯ 𝑥𝑛) ∈ ℝ𝑛:
1

𝑛
∑ 𝑥𝑖 > 𝑐 𝑖≤𝑛 } 

rejection region. Find 𝑐 to have test size of 𝛼, 

then 𝛼 = ℙ (
1

𝑛
∑ 𝑥𝑖 ≥ 𝑐𝑖≤𝑛 |𝐻0) = ℙ(𝑥̅ ≥ 𝑐|𝐻0) 

= ℙ(√𝑛𝑥̅ ≥ √𝑛𝑐|𝐻0) = ℙ(𝑧 ≥ √𝑛𝑐|𝐻0) =  

1 − Φ(√𝑛𝑐), then 𝑐 =
1

√𝑛
Φ−1(1 − 𝛼). 

Power under 𝐻1 is ℙ (
1

𝑛
∑ 𝑥𝑖 ≥ 𝑐𝑖≤𝑛 |𝐻1) =

ℙ(𝑥̅ ≥ 𝑐|𝐻1) = ℙ(√𝑛(𝑥̅ − 1) ≥ √𝑛(𝑐 − 1)|𝐻1)  

= ℙ(𝑧 > √𝑛(𝑐 − 1)|𝐻0) = 1 − Φ (√𝑛(𝑐 − 1)). 

7. P-value (example) 

𝐻0: 𝜃 ∈ Θ0, 𝐻1: 𝜃 ∈ Θ1. For every 𝛼 ∈ (0,1), 

we have a size 𝛼 test with rejection 𝑅𝛼. Let 

𝑥𝑛 = {𝑥1 … 𝑥𝑛} be the realization of a sample 

𝑋𝑛 = {𝑋1 … 𝑋𝑛}, then p-value = inf {𝛼: 𝑥𝑛 ∈
𝑅𝛼}. Suppose reject 𝐻0 iff 𝑇(𝑋𝑛) ≥ 𝑐𝛼, then 

p-value = sup
𝜃∈Θ0

ℙ(𝑇(𝑋𝑛) ≥ 𝑇(𝑥𝑛)), 𝑥𝑛 is 

observed from 𝑋𝑛. If Θ0 = {𝜃0}, then p-value 

= ℙ𝜃0
(𝑇(𝑋𝑛) ≥ 𝑇(𝑥𝑛)). 

XII. Supplemental Tips 

1. Common Trig Identity and Derivatives 
sin(0) = 0, cos(0) = 1, tan(0) = 0, sin′(𝑥) = cos(𝑥), 

cos′(𝑥) = − sin(𝑥), (√𝑥)
′

=
1

2√𝑥
, (𝑒𝑎𝑥)′ = 𝑎𝑒𝑎𝑥, 

σ′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)) sigmoid, (
1

𝑥
)

′
= −

1

𝑥2
. 

2. CRF & Softmax 
∑ (score(𝒕(𝑘), 𝒘(𝑘)) − log ∑ exp (score(𝒕′, 𝒘(𝑘)))𝒕′∈𝑇𝑁 )𝐾

𝑘=1 =

∑ (score(𝒕(𝑘), 𝒘(𝑘)) − 𝑇 log ∑
exp(score(𝒕′,𝒘(𝑘)))

𝑇𝒕′∈𝑇𝑁 )𝐾
𝑘=1 . As 

𝑇 → 0, ∑ (score(𝒕(𝑘), 𝒘(𝑘)) − max
𝑡′∈𝑇𝑁

score(𝒕′, 𝒘(𝑘)))𝐾
𝑘=1 . 

Becomes structured perception update rule if 

minibatch size and learning rate are 1. 

3. Common Semirings 

Boolean: ⟨{0,1},∨,∧ ,0,1⟩ recognition; Viterbi: 

⟨[0,1], max,× ,0,1⟩ prob of best derivation; 

Inside: ⟨ℝ+ ∪ {∞}, +,× ,0,1⟩ prob of a string; 

Real: ⟨ℝ ∪ {∞}, min, +, ∞, 0⟩ shortest 

distance; Tropical: ⟨ℝ+ ∪ {∞}, min, +, ∞, 0⟩ 
shortest distance with non-negative weights; 

Counting: ⟨ℕ, +,× 0,1⟩ number of paths. 

4. Kleene Star of a Semiring 

∀𝑥 ∈ 𝐴, (1) 𝑥∗ =⊕𝑛=0
∞ 𝑥𝑛, (2) 𝑥∗ = 𝟏 ⊕ 𝑥 ⊗

𝑥∗, (3) 𝑥∗ = 𝟏 ⊕ 𝑥∗ ⊗ 𝑥. Note: 𝑥0 = 𝟏. 

5. Linear Indexed Grammar (LIG) 

𝐺 = ⟨𝒩, 𝑆, 𝐼, Σ, ℛ⟩, where 𝒩 is non-terminals 

(e.g., 𝑁, 𝑆, 𝑇); 𝑆 is start non-terminal; 𝐼 is 

finite set of indices (e.g., 𝑓, 𝑔, ℎ); Σ is 

alphabet; ℛ is set of production rule in one of 

the forms: (1) 𝑁[𝜎] → 𝛼𝑀[𝜎]𝛽, (2) 𝑁[𝜎] =
𝛼𝑀[𝑓𝜎]𝛽, (3) 𝑁[𝑓𝜎] → 𝛼𝑀[𝜎]𝛽. For copying 

(e.g., abcabc) and mirroring (e.g., abccba), the 

indices 𝐼 must be chosen from Σ. Example: 

{𝑎𝑛𝑏𝑛#𝑐𝑛𝑑𝑛|𝑛 ≥ 0}, 𝑆[𝜎] → 𝑎𝑆[𝜎𝑓]𝑑, 

𝑆[𝜎] → 𝑇[𝜎], 𝑇[𝜎𝑓] → 𝑏𝑇[𝜎]𝑐, 𝑇[] → #. 

6. WFSA and n-gram 

𝑝(𝑤1 … 𝑤𝑀) = ∏ 𝑝(𝑤𝑚|𝑤𝑚−1 … 𝑤𝑚−𝑛+1)𝑀
𝑚=1   

the number of states is 𝑂(|𝑉|𝑛−1), where 𝑛 is 

n-gram, |𝑉| is vocabulary size. 

7. Determinant, Eigenvector, Eigenvalue 

det (
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

) = 𝑎(𝑒𝑖 − 𝑓ℎ) − 𝑏(𝑑𝑖 − 𝑓𝑔) + 𝑐(𝑑ℎ − 𝑒𝑔). 

Given 𝐴𝑛×𝑛 a matrix and 𝑣𝑛×1 eigenvector, 

𝐴𝑣 = 𝜆𝑣, 𝜆 is eigenvalue, a scalar. 

8. Transformer and Attention Complexity 

Using dot-product 𝜶(𝑡) = softmax (
𝒒𝑡

𝑇𝐾

√ℎ
), with 

𝒙𝑡 ∈ ℝℎ, we define 𝒒𝑡 = 𝑊𝑞𝒙𝑡, 𝐾 = 𝑊𝐾𝑋, 𝑑 

the context window. We have 𝒄(𝑡) = 𝜶(𝑡)𝑉𝑡 =

softmax (
𝒒𝑡𝐾𝑇

√ℎ
) 𝑉𝑡, 𝑡 ∈ [1, ⋯ , 𝑛], 𝒒𝑡 ∈ ℝ1×ℎ, 

𝑋 ∈ ℝ𝑛×ℎ, 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣 ∈ ℝℎ×ℎ, 𝐾𝑡, 𝑉𝑡 ∈ ℝ𝑑×ℎ. 

Then 𝑄, 𝐾, 𝑉 = 𝑋𝑊{𝑞,𝑘,𝑣} ∈ ℝ𝑛×ℎ → 𝑶(𝒏𝒉𝟐), 

𝜶(𝑡)𝑉𝑡 ∈ ℝ1×ℎ → 𝑶(𝒏𝒉𝒅), 𝑛 comes from 𝑡. 

9. Transformer Parameters Count 

𝑉 vocabulary, 𝐸 embedding, embedding has 

𝑉𝐸. Positional encoding has 𝐿𝐸, 𝐿 is 

sequence length. Multi-head attention 

(𝑄, 𝐾, 𝑉) has 3𝐸2, bias 3𝐸, projection weight 

and bias 𝐸2 + 𝐸, total 4𝐸2 + 4𝐸. FFN has 

8𝐸2 + 5𝐸, where forward has 4𝐸2 + 4𝐸, 

projection has 4𝐸2 + 𝐸. Normalization 4𝐸.  

10. Sentiment Analysis  

Classifying utterances according to how they 

make the interlocutor feel, e.g., movie review, 

spam detection, recommender system, etc. (1) 

Embedding: map words/tokens to vectors that 

encode semantic meaning (one-hot, skip-gram, 

BERT, ELMo). (2) Pooling: aggregate token 

vectors into a fixed-size representation for 

classification (mean, max, sum pooling). (3) 

Backprop. (4) Softmax. Note: Skip-gram 

𝑝(𝑐|𝑤) =
1

𝑍(𝑤)
exp{ewrd(𝑤) ⋅ ectx(𝑤)}, two outputs - 

{ewrd(𝑤)}𝑤∈𝑉 and {ectx(𝑤)}𝑤∈𝑉, 𝑉 is the set of 

word types in corpus, e(𝑤) ∈ ℝ𝑑, 𝑂(𝑘𝐶). 

def Floyd-WarshallMatrixMultiplication(𝐴, 𝐵): 
  𝑊1 be adjacency matrix of paths of length 1 
  for each vertex 𝑘 in 𝑁: 
    𝑊𝑘 = 0 
  for each vertex 𝑘 in 𝑁: 
    𝑊𝑘 = 𝑊𝑘 ⊕ (𝑊𝑘−1 ⊗ 𝑊1) 
  return 𝑊𝑘 

def SemiringMatrixMultiplication(𝐴, 𝐵): 
  𝐴 and 𝐵 be square matrices of 𝑁 × 𝑁 
  𝐶 be an empty 𝑁 × 𝑁 matrix 
  for 𝑛 from 1 to 𝑁: 

for 𝑝 from 1 to 𝑁: 
  sum ← 𝟎 
  for 𝑚 from 1 to 𝑁: 
    sum ← sum ⊕ 𝐴[𝑛][𝑚] ⊗ 𝐵[𝑚][𝑝] 
  𝐶[𝑛][𝑝] ← sum 

  return 𝐶 

def Floyd-Warshall(𝐺): 
  𝑊 be a 𝑁 × 𝑁 adjacency matrix of graph 𝐺 
  𝑑 be a 𝑁 × 𝑁 array of minimum distance to ∞ 
  for each edge (𝑢, 𝑣): 
    𝑑[𝑢][𝑣] ← 𝑊[𝑢][𝑣] 
  for each vertex 𝑣: 
    𝑑[𝑣][𝑣] ← 0 
  for 𝑘 from 1 to 𝑁: 

for 𝑖 from 1 to 𝑁: 
  for 𝑗 from 1 to 𝑁: 
    if 𝑑[𝑖][𝑗] > 𝑑[𝑖][𝑘] + 𝑑[𝑘][𝑗]: 
      𝑑[𝑖][𝑗] ← 𝑑[𝑖][𝑘] + 𝑑[𝑘][𝑗] 

  return 𝑑 

def Lehmann(𝑊): 
  𝑊 be a 𝑁 × 𝑁 array of minimum distance 0 
  for each edge (𝑢, 𝑣): 
    𝑊[𝑢][𝑣] ← 𝑊[𝑢][𝑣] 
  for each vertex 𝑣: 
    𝑊[𝑣][𝑣] ← 𝑊[𝑣][𝑣] 
  for 𝑘 from 1 to 𝑁: 

for 𝑖 from 1 to 𝑁: 
  for 𝑗 from 1 to 𝑁: 
    𝑊[𝑖][𝑗] ← 𝑊[𝑖][𝑗] ⊕ (𝑊[𝑖][𝑗] ⊗ 𝑊[𝑘][𝑘]∗ ⊗ 𝑊[𝑘][𝑗]) 

  return 𝑊 

Lehmann with 

tropical semiring is 

Floyd-Warshall 


