
■■■ ■■■ ■■■

■■■ ■■■ ■■■

I. Backpropagation

1. Log (ln) and Exp Operations

𝑒0 = 1 , 𝑒−∞ → 0, ln 1 = 0, ln 𝑒 = 1.

𝑒𝑥 ⋅ 𝑒𝑦 = 𝑒𝑥+𝑦 ln(𝑥 ⋅ 𝑦) = ln 𝑥 + ln 𝑦

𝑒𝑥/𝑒𝑦 = 𝑒𝑥−𝑦 ln(𝑥/𝑦) = ln 𝑥 − ln 𝑦

(𝑒𝑥)𝑦 = 𝑒𝑥𝑦 ln(𝑥𝑦) = 𝑦 ln 𝑥

𝑒ln 𝑥 = 𝑥 ln(𝑒𝑥) = 𝑥

II. Log-Linear Models

1. Exponential Family

𝑝(𝑥|𝜃) =
1

𝑍(𝜃)
ℎ(𝑥)𝑒𝜃⋅𝜙(𝑥), where 𝑍(𝜃) is

partition function, ℎ(𝑥) determines supports,

𝜃 is canonical parameters, 𝜙(𝑥) is sufficient

statistics, finite.

2. Log-Linear Models

𝑝(𝑦|𝑥, 𝜃) =
1

𝑍(𝜃)
𝑒𝜃⋅𝑓(𝑥,𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌,

feature 𝑓: 𝑋 × 𝑌 ∈ ℝ𝐾, parameters 𝜃 ∈ ℝ𝐾.

𝑍(𝜃) = ∑ 𝑒𝜃⋅𝑓(𝑥,𝑦′)
𝑦′∈𝑌 , 𝑂(|𝑌|) computation.

3. Softmax

softmax(ℎ, 𝑦, 𝑇) =
𝑒ℎ𝑦/𝑇

∑ 𝑒
ℎ

𝑦′/𝑇

𝑦′∈𝑌

, ℎ𝑦 = 𝜃 ⋅ 𝑓(𝑥, 𝑦),

temperature 𝑇 ∈ ℝ, 𝑇 → ∞ uniform, 𝑇 → 0

argmax (annealing).

III. Multilayer Perceptron (MLP)

1. Multilayer Perceptron (MLP)

ℎ(𝑁) = 𝜎(𝑁)(𝑊(𝑁) … 𝜎(2)(𝑊(2)𝜎(1)(𝑊(1)𝑒(𝑥)))),

ℎ(𝑁) ∈ ℝ|𝑌|, activation 𝜎(𝑖), 𝑊(𝑁) ∈ ℝ|𝑌|⋅𝑑𝑁,

𝑊(1) ∈ ℝ𝑑1⋅𝑑1, encoding 𝑒(𝑥) ∈ ℝ𝑑1. Then,

MLP is 𝑝(𝑦|𝑥) =
exp(ℎ𝑦)

∑ exp(ℎ𝑦′) 𝑦′∈𝑌

= softmax(ℎ(𝑁), 𝑦).

MLP is a log-linear model, where we also

learn the feature 𝑓. Final layer is a softmax.

2. XOR Problem 𝑦 = 𝛼1𝑥1 + 𝛼2𝑥2 + 𝑏
Not linearly separable (a

single-layer MLP can’t

solve). Use activations:

tanh(𝑥) = 2𝜎(2𝑥) − 1 or

sigmoid 𝜎(𝑥) =
1

1+exp(𝑥)
.

𝑥1 𝑥2 𝑦

0 0 0

0 1 1

1 0 1

1 1 0

IV. Language Models: n-grams and RNNs

1. Language Modeling

Alphabet Σ is a finite, non-empty set of

symbols. A string over Σ is finite sequence of

alphabet symbols. Kleene closure Σ∗ is the

set of all possible strings.

2. Globally Normalized Language Models

𝑝(𝒚) =
1

𝑍
𝑒score(𝒚), 𝑍 = ∑ 𝑒score(𝒚′)

𝑦′∈Σ∗ is

the normalization constant, infinite sum, not

always computable; score: 𝒚 → ℝ.

3. Locally Normalized Language Models

With 𝒚 = 𝑦1𝑦2 … 𝑦𝑁 and 𝒚<𝑁 = 𝑦1𝑦2 … 𝑦𝑁−1,
𝑝(𝒚) = 𝑝(𝑦1|BOS)𝑝(𝑦2|BOS 𝑦1) … 𝑝(𝑦𝑁|𝒚<𝑁)𝑝(𝐸𝑂𝑆|𝑦).

- Local normalization guarantees the

normalization constant to be 1.

- The sum of the probability of all children

given their parent is 1.

- Every node has an EOS as a descendant.

4. Tightness

- A locally normalized LM that sums to 1 is

called tight.

- A non-tight loses probability to infinitely

long structures - sequence models.

- To ensure tightness, force 𝑝(EOS|parent) >
𝜉 > 0 for every parent node with constant 𝜉.

5. n-gram Language Models

Assumption: limit the context to the previous

𝒏 − 𝟏 symbols. A finite number of histories.

𝑝(𝑦𝑡|𝒚<𝑡) = 𝑝(𝑦𝑡|𝑦𝑡−𝑛+1 … 𝑦𝑡−1), 𝒚 ∈ Σ∗,
𝑝(𝒚) = 𝑝(EOS|𝑦𝑡−𝑛+2 … 𝑦𝑡) ∏ 𝑝(𝑦𝑡|𝑦𝑡−𝑛+1 … 𝑦𝑡−1)𝑇

𝑡=1 .
6. Recurrent Neural Network (RNN)

𝑝(𝑦𝑡|𝒚<𝑡) =
𝑒𝑢(𝑦𝑡)⋅ℎ𝑡

∑ 𝑒𝑢(𝑦𝑡
′)⋅ℎ𝑡

𝑦′∈Σ̃

, 𝑢(𝑦𝑡)

is word embedding -

individual symbols, ℎ𝑡 is

context embedding -

summarizes 𝑛 − 1 symbols, 𝑓 is RNN type.

7. Vanilla / Elman RNN

Elman: 𝒉𝑡 = 𝜎(𝑼𝒉𝑡−1 + 𝑽𝒖(𝑦𝑡−1) + 𝒃ℎ)

Variant: 𝒉𝑡 = 𝜎(𝑾[𝒉𝑡−1; 𝒖(𝑦𝑡−1)])

𝑾 ∈ ℝ𝑑×2𝑑, 𝑼, 𝑽 ∈ ℝ𝑑×𝑑 are recurrence

matrices, 𝜎 is a non-linearity as in an MLP.

- Trained with backpropagation through time

(temporal hidden-state dependencies).

- Each timestamp yields an output and a

recurrent connection.

- Parameters are shared across timestamps.

- Unroll RNN first, then backpropagate.

8. LSTM, GRU, Vanishing / Exploding

Vanishing gradient - update < 1, exploding

gradient - update > 1. LSTM and GRU can

help solve the vanishing gradient problem

as they have cell state / gate update with

additive update. ReLU also works. Sigmoid

and Tanh can lead to vanishing gradient.

V. Part-of-speech Tagging with CRFs

1. Conditional Random Fields (CRF)

𝑝(𝒕|𝒘) =
exp{score(𝒕,𝒘)}

∑ exp{score(𝒕′,𝒘)}
𝒕′∈𝑇𝑁

, score(𝒕, 𝒘) =

∑ score(⟨𝑡𝑛−1, 𝑡𝑛⟩, 𝒘)𝑁
𝑛=1 , 𝒕 is part of speech

tagging, 𝒘 is an input sentence, 𝑁 = |𝒘|.
∑ exp{score(⟨𝑡0, 𝑡1⟩, 𝒘)} × (∑ exp{score(⟨𝑡1, 𝑡2⟩, 𝒘)}𝑡2∈𝑇 ×𝑡1∈𝑇

… × (∑ exp{score(⟨𝑡𝑁−1, 𝑡𝑁⟩, 𝒘)}𝑡𝑁∈𝑇)). Score can be

chosen, consisting of transition (how likely

𝑡2 follows 𝑡1) and emission (how likely

current word is 𝑡2). Combinatorial assumption

2. Viterbi Algorithm (for shortest path)

Replacing max with sum is Backward Algo.

The 𝑏 in Viterbi is the backpointer for the best

scoring path. Overall complexity 𝑂(𝑁|𝑇|2).

Can generalize the algorithm with semirings.

3. Semirings

A semiring 𝑅 = (𝐴,⊕,⊗, 0̅, 1̅) must satisfy:

- (𝐴,⊕, 0̅) is a commutative monoid;

- (𝐴,⊗, 1̅) is a monoid;

- ⊗ distributes over ⊕: ∀𝑎, 𝑏, 𝑐 ∈ 𝐴,
(𝑎 ⊕ 𝑏) ⊗ 𝑐 = (𝑎 ⊗ 𝑐) ⊕ (𝑏 ⊗ 𝑐), 𝑐 ⊗
(𝑎 ⊕ 𝑏) = (𝑐 ⊗ 𝑎) ⊕ (𝑐 ⊗ 𝑏);

- 0̅ is annihilator of ⊗: 0̅ ⊗ 𝑎 = 𝑎 ⊗ 0̅ = 0̅.

VI. Context-Free Parsing with CKY

1. Context-Free Grammar (CFG)

A context-free grammar 𝐺 is a quadruple

⟨𝒩, 𝑆, 𝜀, ℛ⟩ consisting of:

- A finite set of non-terminal symbols 𝒩;

- A distinguished start non-terminal symbol 𝑆;

- An alphabet of terminal symbols Σ;

- A set of production rules ℛ of the form 𝑁 →
𝛼, where 𝑁 ∈ 𝒩 and 𝛼 ∈ (𝒩 ∪ Σ)∗.

2. Probabilistic CFGs (PCFG)

𝑝(tree) = ∏ 𝑝(𝑁 → 𝛼)𝑁∈𝒩,𝛼∈(𝒩∪Σ)∗ . PCFGs

are locally normalized. For all rules with the

same left-hand side, e.g., 𝑁 → 𝛼1, … , 𝑁 → 𝛼𝑘,

the sum of probability must be 1.

3. Weighted CFGs (WCFG)

exp{score(tree)} = ∏ exp{score(𝑁 → 𝛼)}𝑁∈𝒩,𝛼∈(𝒩∪Σ)∗ .

WCFGs are globally normalized, i.e., 𝑝(𝒕) =
1

𝑍
∏ exp{𝑠𝑐𝑜𝑟𝑒(𝑟)}𝑟∈𝒕 , 𝑍 = ∑ ∏ exp{𝑠𝑐𝑜𝑟𝑒(𝑟′)}𝑟′∈𝒕𝑡′∈𝑇 , 𝑇

is countably infinite.

4. Chomsky Normal Form (CNF)

A grammar is in CNF is all productions have

the form: (1) 𝑁1 → 𝑁2𝑁3, 𝑁1,2,3 are non-

terminals; (2) 𝑁 → 𝛼, 𝑁 is a non-terminal,

and 𝛼 is a terminal; (3) 𝑆 → 𝜀, 𝑆 is start

symbol and 𝜀 is empty string. With CNF, we

can partition the WCFG into non-terminal

production and terminal production.

5. Cocke-Kasami-Younger (CKY)

Replacing ⊕ with + and ⊗ with × will give

us the weighted CKY. Complexity 𝑂(𝑁3|ℛ|),

𝑁 is sentence length, |ℛ| is rule set size.

VII. Dependency Parsing with MTT

1. Dependency Trees

(1) Projective: no crossing arcs, related to

constituency. (2) Non-projective: crossing

arcs, related to discontinuous constituency.

2. Distributions Over Non-projective Trees

𝑝(𝒕|𝒘) =
1

𝑍
𝑒score(𝒕,𝒘), 𝑍 = ∑ 𝑒score(𝒕′,𝒘)

𝒕′∈𝑇(𝒘) , score

presents the compatibility of the parse 𝒕 with

sentence 𝒘, 𝑇(𝒘) is all admissible parses of

sentence 𝒘, 𝑁 = |𝒘| input sentence length.

Computing 𝑍 requires 𝑂(𝑁𝑁), spanning trees

𝑁𝑁−2, root constraint (𝑁 − 1)𝑁−2. 𝑁𝑁−1 for

directed graphs, e.g., dependency parsing.

3. Edge-factored Assumption

score(𝒕, 𝒘) = ∑ score(𝑖 → 𝑗, 𝒘)(𝑖→𝑗)∈𝒕 + score(𝑟, 𝒘),

where 𝑟 is the root according to the tree 𝒕.

Edges are the first part of the sum. Probability

𝑝(𝒕|𝒘) =
1

𝑍
∏ 𝑒score(𝑖,𝑗,𝒘)

(𝑖→𝑗)∈𝒕 𝑒score(𝑟,𝒘), 𝑍 =

∑ ∏ 𝑒score(𝑖,𝑗,𝒘)
(𝑖→𝑗)∈𝒕′ 𝑒score(𝑟,𝒘)

𝒕′∈𝑇(𝒘) .

4. Matrix-Tree Theorem (MTT) 𝑂(𝑁3)

Let 𝐴𝑖𝑗 = 𝑒score(𝑖,𝑗,𝒘), 𝜌𝑗 = 𝑒score(𝑗,𝒘), 𝑁𝑇(𝐺) = |𝐿̂𝑖|.

(1) Graph Laplacian: 𝐿𝑖𝑗 = −𝐴𝑖𝑗 if 𝑖 ≠ 𝑗,

∑ 𝐴𝑘𝑗𝑘≠𝑖 otherwise. (2) Modified Graph

Laplacian: 𝜌𝑗 if 𝑖 = 1 (root), −𝐴𝑖𝑗 if 𝑖 ≠ 𝑗,

∑ 𝐴𝑘𝑗𝑘≠𝑖 otherwise. Now 𝑍 = |𝐿| = det(𝐿).

5. Chu-Liu-Edmonds Algorithm 𝑂(𝑁3)

To find the best parse of a sentence

(maximum-weight spanning tree - MST),

argmax𝒕∈𝑇 ∑ score(𝑖, 𝑗, 𝒘)(𝑖→𝑗)∈𝒕 .

For a cycle 𝐶, we have (1) exit edges

emanating from 𝐶, (2) enter edges pointing

to 𝐶, (3) dead edges inside or both ends in 𝐶,

(4) external edges are outside 𝐶.

VIII. Semantic Parsing with CCG

1. Principle of Compositionality

The meaning of a complex express is a

function of the meanings of that expression’s

constituent parts.

2. Lambda Calculus

If 𝑀 is a term, 𝑥 is a variable, 𝜆𝑥. 𝑀 is a term,

which takes 𝑥 as input and produces 𝑀.

Scope: ((𝜆𝑥. 𝜆𝑦. (𝑥((𝜆𝑥. 𝑥 𝑥)𝑦))𝜆𝑥. 𝑥)𝑧).

(1) 𝜶-conversion

Renaming a variable in a lambda term,

together with all occurrences, e.g.,

𝜆𝑥. 𝜆𝑦(𝑥((𝜆𝑥. 𝑥 𝑥)𝑦)) → 𝜆𝑧. 𝜆𝑦(𝑧((𝜆𝑥. 𝑥 𝑧)𝑦)).

(2) 𝜷-reduction

Applying one lambda term to another, e.g.,

𝜆𝑦. (𝑧((𝜆𝑥. 𝑥 𝑧)𝑦)) → 𝜆𝑦. (𝑧(𝑧 𝑦)).

Warning: repeatedly applying 𝛽-reductions

may not terminate (𝐹 𝐹) → (𝜆𝑥. ((𝑥 𝑥)𝑥)𝐹) →
((𝐹 𝐹)𝐹) → (((𝐹 𝐹)𝐹)𝐹) → ⋯.

(3) Logical constants

- Objects & relations: ALEX, MOSKVA,

LIKES, TEACHER, etc.

- Arity of relations: LIKES(𝑥, 𝑦) has arity 2,

TEACHER(𝑥) has arity 1, etc.

(4) Variables: uppercase (𝑃, 𝑄, etc.) for

relations, lowercase (𝑥, 𝑦, etc.) for objects.

(5) Literals: Applying relations to objects or

variables, e.g., LIKES(LEE, BOB),

TEACHER(BOB), LIKES(LEE, 𝑦), P(LEE,

BOB), P(𝑥, 𝑦), etc.

Note: With these we can construct logical

terms with logical connectives and

quantifiers. Can also form lambda terms.

3. Combinatory Categorical Grammars

Use CCG to deal with context-sensitive

grammars and cross serial dependencies.

(1) Definition: A CCG is ⟨𝑉𝑇 , 𝑉𝑁, 𝑆, 𝑓, 𝑅⟩,
where 𝑉𝑇 is finite set of terminals (lexicon),

𝑉𝑁 is finite site of non-terminals (atomic

categories), 𝑆 ∈ 𝑉𝑁 a distinguished category,

𝑓 maps 𝑉𝑇 ∪ {𝜀} to finite subsets of 𝐶(𝑉𝑁),

set of categories, 𝑅 is combinatory rules.

(2) Combinatory rules: forward (𝑥/𝑦) is

𝑦 → 𝑥, backward 𝑦 is (𝑥\𝑦) → 𝑥.

Note: CCG in higher-order composition

rules, each rule may give infinite instances.

CFGs have a finite set of non-terminals.

4. Parsing CCGs (CKY style)

One inference rule for every forward rule
[𝑋/𝑌,𝑖,𝑗][𝑌𝛽,𝑗,𝑘]

𝑋𝛽,𝑖,𝑘
, 𝑋/𝑌 𝑌𝛽 ⇒ 𝑋𝛽. Axioms have

the form [𝑋, 𝑖, 𝑖 + 1] for each input 𝑤𝑖+1.

IX. Machine Translation Transformers

1. Sequence-to-sequence Models

Model the probability distribution 𝑝(𝒚|𝒙)

over all strings 𝒚 ∈ 𝑌 for some sentence 𝒙,

i.e., what is the most likely translation 𝒚 of

string 𝒙. Maximizing the log-likelihood

argmax𝜽 ∑ log 𝑝(𝒚(𝑖)|𝒙(𝑖); 𝜽)𝑁
𝑖=1 =

argmax𝜽 ∑ ∑ log 𝑝(𝑦𝑡
(𝑖)

|𝒙(𝑖), 𝒚<𝑡
(𝑖)

; 𝜽)
|𝒚(𝑖)|

𝑡=1
𝑁
𝑖=1 .

2. The Attention Mechanism

(1) Definition

def ViterbiAlgorithm(𝒘,𝑇,𝑁):
 for 𝑡𝑁−1 ∈ 𝑇:
 𝑣(𝒘, 𝑡𝑁−1, 𝑁 − 1) ← 𝑒score(⟨𝑡𝑁−1,EOS⟩,𝒘)
 for 𝑛 ∈ 𝑁 − 2, … ,1:
 for 𝑡𝑛 ∈ 𝑇:
 𝑣(𝒘, 𝑡𝑛, 𝑛) ← max

𝑡𝑛+1∈𝑇
𝑒score(⟨𝑡𝑛,𝑡𝑛+1⟩,𝒘) × 𝑣(𝒘, 𝑡𝑛+1 , 𝑛 + 1)

 𝑏(𝑡𝑛, 𝑛) ← argmax
𝑡𝑛+1∈𝑇

𝑒score(⟨𝑡𝑛,𝑡𝑛+1⟩,𝒘) × 𝑣(𝒘, 𝑡𝑛+1, 𝑛 + 1)

 𝑣(𝒘, BOS, 0) ← max
𝑡1∈𝑇

(𝑣(𝒘, 𝐵𝑂𝑆, 0), 𝑒score(⟨𝐵𝑂𝑆,𝑡1⟩,𝒘) × 𝑣(𝒘, 𝑡1 , 1))

 𝑏(BOS, 0) ← argmax
𝑡1∈𝑇

(𝑣(𝒘, 𝐵𝑂𝑆, 0), 𝑒score(⟨𝐵𝑂𝑆,𝑡1⟩,𝒘) × 𝑣(𝒘, 𝑡1 , 1))

 for 𝑛 ∈ 1, … , 𝑁:
 𝑡𝑛 ← 𝑏(𝑡𝑛−1, 𝑛 − 1)
 return 𝑡1:𝑁, 𝑣(𝒘, BOS, 0)

def SemiringCKY(𝒔,⟨𝒩, 𝑆, Σ, ℛ⟩,score):
 𝑁 ← |𝒔|
 chart ← 𝟎
 for 𝑛 = 1, … , 𝑁:
 for 𝑋 → 𝒔𝑛 ∈ ℛ:
 chart[𝑛, 𝑛 + 1, 𝑋] ⊕= 𝑒score(𝑋→𝒔𝑛)
 for span = 2, … , 𝑁:
 for 𝑖 = 1, … , 𝑁 − span + 1:
 𝑘 ← 𝑖 + span
 for 𝑗 = 𝑖 + 1, … , 𝑘 − 1:

 for 𝑋 → 𝑌 𝑍 ∈ ℛ:
 chart[𝑛, 𝑛 + 1, 𝑋] ⊕= 𝑒score(𝑋→𝑌 𝑍) ⊗ chart[𝑖, 𝑗, 𝑌] ⊗

chart[𝑗, 𝑘, 𝑍]
 return 𝑐ℎ𝑎𝑟𝑡[𝑛, 𝑁 + 1, 𝑆]

def MST(𝐺):
 if CYCLE IN GREEDY(𝐺):
 return
EXPAND(CONSTRAIN(MST(CONTRACT(𝐺,CYCLE))))

def CONSTRAIN(𝐺):
 if NUMBER OF ROOT EDGES(GREEDY(𝐺)) > 1:
 𝑒 ← ROOT EDGE TO REMOVE (𝐺)

if CYCLE IN GREEDY(𝐺 − 𝑒):
 return CONSTRAIN(CONTRACT(𝐺,CYCLE))
else:
 return CONSTRAIN(𝐺 − 𝑒)

 else:
 return GREEDY(𝐺)

CKY requires CNF

■■■ ■■■ ■■■

■■■ ■■■ ■■■

The attention mechanism enables a model to

attend to information from different time

steps, 𝜶 = softmax(score(𝒒, 𝐾)), 𝒄 = 𝜶𝑉,

where 𝒒 is the query, 𝐾 is the keys, 𝑉 is the

values, 𝒄 is the resulting context.

(2) Variations of Attention Mechanisms

(i) Cross-attention Without projection: 𝒒𝒕 =

𝒉𝒕
𝒅; 𝒌𝒊 = 𝒗𝒊 = 𝒉𝒊

𝒆, 𝑖 ∈ 1 ⋯ 𝑛; 𝐾 = 𝑉 = 𝐻𝑒.

With linear projection (𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣 ∈ ℝ𝑑×𝑑):

𝒒𝒕 = 𝒉𝒕
𝒅 × 𝑊𝑞

𝑑; 𝒌𝒊 = 𝒉𝒊
𝒆 × 𝑊𝑘

𝑒; 𝒗𝒊 = 𝒉𝒊
𝒆 ×

𝑊𝑣
𝑒; 𝐾 = 𝐻𝑒 × 𝑊𝑘

𝑒; 𝑉 = 𝐻𝑒 × 𝑊𝑣
𝑒; 𝑖 ∈ 1 ⋯ 𝑛

(ii) Self-attention Without projection: 𝒒𝒕 =
𝒉𝒕

𝒔; 𝒌𝒊 = 𝒗𝒊 = 𝒉𝒊
𝒔, 𝑖 ∈ 1 ⋯ 𝑛/𝑚; 𝐾 = 𝑉 =

𝐻𝑠. With linear projection: 𝒒𝒕 = 𝒉𝒕
𝒔 × 𝑊𝑞

𝑠;

𝒌𝒊 = 𝒉𝒊
𝒔 × 𝑊𝑘

𝑠; 𝒗𝒊 = 𝒉𝒊
𝒔 × 𝑊𝑣

𝑠; 𝐾 = 𝐻𝑠 ×
𝑊𝑘

𝑠; 𝑉 = 𝐻𝑠 × 𝑊𝑣
𝑠; 𝑖 ∈ 1 ⋯ 𝑛; 𝑠 ∈ {𝑒, 𝑑}.

Note: 𝑛 is input length; 𝑚 is output length (in

self-attention decoder); 𝒉 is the hidden state,

𝑒 is encoder, 𝑑 is decoder; 𝒒𝒕, 𝒌𝒊, 𝒗𝒊, 𝒉𝒊
𝒆, 𝒉𝒕

𝒅 ∈
ℝ1×𝑑; 𝐻𝑒 ∈ ℝ𝑛×𝑑; 𝐻𝑑 ∈ ℝ𝑚×𝑑.

3. Transformer

A: word embeddings (e.g.,

one-hot encoding).

B: positional encoding,

same dimension as input,

can be learned or

fixed. sin 𝑝/
𝐶𝑖/𝑑 if 𝑖 =
2𝑘, cos 𝑝/
𝐶𝑖/𝑑 if 𝑖 =
2𝑘 + 1

C: self-

attention

D: masked

self-

attention, in

decoder, position

after current time stamp cannot be attended.

E: cross-attention, allows decoder to attend

encoder.

F: feed-forward layers, linear projections

followed by non-linearities.

G: residual connection, in both encoder and

decoder, passes input to next layer without

transformation, help with vanishing gradients.

H: layer normalization, mean 0, variance 1.

4. Decoding Strategies

𝑂(|Σ|𝑛) due to non-markovian structure 𝒚<𝑡.

(1) Beam search (TopK): Pruned breadth-

first search where the breadth is limited to

size 𝑘. Maximum of 𝑘 paths kept at each time

step. Greedy, no guarantee.

(2) Sampling (TopP): Sample according to

the conditional distribution 𝑝(𝒚|𝒙) at each

time step. Sample only from top items that

cover p% of probability mass.

X. Transliteration with WFSTs

1. Finite-State Automata

Determines if a string is an element of a given

language. A FSA 𝒜 is a 5-tuple (Σ, 𝑄, 𝐼, 𝐹, 𝛿)

where Σ is alphabet, 𝑄 is a finite set of

states, 𝐼 ⊆ 𝑄 is the set of initial states, 𝐹 ⊆
𝑄 is the set of final or accepting states, 𝛿 ⊆
𝑄 × (Σ ∪ {𝜀}) × 𝑄 is a finite multi-set.

Unambiguous if for every string 𝑠 ∈ Σ∗ there

is at most 1 accepting path for that 𝑠.

Note: Vertices are the states in 𝑄, edges are

transitions in 𝛿, edge labels correspond to

input symbol in Σ.

2. Weighted Finite-State Automata

A WFSA 𝒜 over a

semiring 𝒲 = (𝕂,⊕
,⊗, 𝟎, 𝟏) is

(Σ, 𝑄, 𝐼, 𝐹, 𝛿, 𝜆, 𝜌)

where in addition

to FSA, 𝛿 ⊆ 𝑄 × (Σ ∪
{𝜀}) × 𝕂 × 𝑄 is a finite multi-set of

transitions, 𝜆: 𝑄 → 𝕂 an initial weighting

function over 𝑄, 𝜌: 𝑄 → 𝕂 a final weighting

function over 𝑄, 𝐼 = {𝑞 ∈ 𝑄|𝜆(𝑞) ≠ 𝟎} and

𝐹 = {𝑞 ∈ 𝑄|𝜌(𝑞) ≠ 𝟎}.

3. Path

A path 𝝅 is an element of 𝛿∗ with consecutive

transitions (𝑞1 →⋅/⋅ 𝑞2, ⋯ , 𝑞𝑛−1 →⋅/⋅ 𝑞𝑁).

𝑝(𝝅) = 𝑞1 is the origin, 𝑛(𝝅) = 𝑞𝑁 is the

destination. The length is the number of

transitions |𝝅|. The yield of a path is the

concatenation of the input symbols on the

edges along the path 𝑠(𝝅). A path 𝝅 is a cycle

if the starting and ending states are the same.

4. Weighted Finite-State Transducers

A WFST 𝒯 over a semiring 𝒲 = (𝕂,⊕,⊗
, 𝟎, 𝟏) is (Σ, Ω, 𝑄, 𝐼, 𝐹, 𝛿, 𝜆, 𝜌) where Σ is

finite input alphabet, Ω is finite output

alphabet, 𝑄 is finite set of states, 𝐼 ⊆ 𝑄 is

initial states, 𝐹 ⊆ 𝑄 is final states, 𝛿 ⊆
𝑄 × (Σ ∪ {𝜀}) × (Ω ∪ {𝜀}) × 𝕂 × 𝑄 finite

multi-set of transitions, 𝜆: 𝑄 → 𝕂 initial

weighting function over 𝑄, 𝜌: 𝑄 → 𝕂 final

weighting function over 𝑄.

5. Composition of WFSTs

Composition 𝒯1 ∘ 𝒯2 of two WFSTs 𝒯1 =
(Σ, Ω, 𝑄1, 𝐼1, 𝐹1, 𝛿1, 𝜆1, 𝜌1) and 𝒯2 =
(Σ, Θ, 𝑄2, 𝐼2, 𝐹2, 𝛿2, 𝜆2, 𝜌2) is the WFST 𝒯 =
(Σ, Θ, 𝑄, 𝐼, 𝐹, 𝛿, 𝜆, 𝜌) such that 𝒯(𝒙, 𝒚) =
⊕𝒛∈Ω∗ 𝒯1(𝒙, 𝒚) ⊗ 𝒯2(𝒛, 𝒚).

6. Pathsum

𝒜 be a WFSA over a semiring 𝒲 = (𝕂,⊕,⊗
, 𝟎, 𝟏). The pathsum in 𝒜 is defined as

𝑍(𝒜) =⊕𝝅∈Π(𝒜) 𝑤(𝝅). Pathsum between

two states 𝑞𝑛, 𝑞𝑚 ∈ 𝑄 as 𝑍(𝑞𝑛, 𝑞𝑚) =
⊕𝝅∈Π(𝑞𝑛,𝑞𝑚) 𝑤(𝝅). Inner path weight 𝑤𝐼(𝜋)

of a path 𝝅 = 𝑞0 →𝑎1/𝑤1 𝑞1 ⋯ 𝑞𝑁−1 →𝑎𝑁/𝑤𝑁 𝑞𝑁

is 𝑤𝐼(𝝅) =⊕𝑛=1
𝑁 𝑤𝑛. 𝑤(𝝅) is the path weight

as 𝑤(𝝅) = 𝜆(𝑝(𝝅)) ⊗ 𝑤𝐼(𝝅) × 𝜌(𝑛(𝝅)).

7. WFST Log-Linear Model

𝑝(𝒚|𝒙) =
1

𝑍
𝑒{score(𝒚,𝒛)} =

1

𝑍
∑ 𝑒∑ score(𝜏𝑛)

|𝝅|
𝑛=1𝝅∈Π(𝒙,𝒚) ,

where 𝑍 = ∑ 𝑒
{score(𝒚′,𝒛)}

𝑦′∈Ω∗ , needs algorithms.

8. Lehmann’s Algorithm 𝑂(𝑁3)

9. Floyd-Warshall Algorithm 𝑂(𝑁3)

10. Semiring Matrix Multiplication 𝑂(𝑁3)

11. Floyd-Warshall Matrix Multiplication

XI. Axes of Modeling

1. Maximum Likelihood Estimation

𝐿(𝜃) = − ∑ log 𝑝(𝑦𝑖|𝑥𝑖 , 𝜃)𝑖≤𝑛 , the negative

log-likelihood. The MLE minimizes 𝔼[(𝜃 −
𝜃∗)2] as 𝑛 → ∞. Can yield the lowest KL-

divergence. Fast. Warning: MLE can only be

computed for probabilistic models, and if 𝑁 is

not sufficient, high variance and overfitting.

2. Parameter Estimation (MLE examples)

Gaussian: 𝑝(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎2
𝑒−

1

2
(

𝑥−𝜇

𝜎
)

2

, 𝐿𝐿 =

−𝑁 log(𝜎) −
𝑁

2
log(2𝜋) −

1

𝜎2
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 ,
𝜕𝐿𝐿

𝜕𝜇
→ 𝜇 =

1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 ,

𝜕𝐿𝐿

𝜕𝜎
→ 𝜎 = √

1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1 . Poisson:

𝐿𝐿 = −𝑛𝜃 + ∑ 𝑥𝑖
𝑁
𝑖=1 ⋅ log(𝜃) − ∑ log(𝑥𝑖!)

𝑁
𝑖=1 ,

𝜕𝐿𝐿

𝜕𝜃
→

𝜃 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 .

3. (Weight) Regularization

- Lasso: ℒ𝑙1
(𝜃) = ℒ(𝜃) + 𝜆||𝜃||1, makes

many coefficients to be 0. No closed form

solution.

- Ridge (L2): ℒ𝑙2
(𝜃) = ℒ(𝜃) + 𝜆||𝜃||2

2,

shrinks parameters to small non-zero values.

Closed form: 𝛽 = (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌.

4. Bayesian Inference and Bayes Rule

Bayesian inference involves a prior,

likelihood, and posterior 𝑝(𝜃|𝑥1, … , 𝑥𝑛) ∝
𝑝(𝑥1, … , 𝑥𝑛|𝜃) ⋅ 𝑝(𝜃). Bayes rule: 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
. Note: When having a strong prior,

Bayesian is preferred over MLE.

5. Model Evaluation

Loss functions can be directly optimized

during training; evaluation metrics may

include any aspect of the model.

- Curve scores: AUC-ROC, AUC-PRC

(precision-recall curve).

- Confusion matrix: precision =

TP/Predicted condition positive (PCP), recall

= TP/CP, accuracy = TP + TN / N, etc.

- 𝑭𝜷 score: 𝐹𝛽 = (1 + 𝛽2)
precision⋅recall

𝛽2precision+recall

6. Hypothesis Testing (example)

Given 𝑋1 ⋯ 𝑋𝑛 ∼ 𝑁(𝜃, 1) i.i.d., test 𝐻0: 𝜃 =

0, 𝐻1: 𝜃 = 1. 𝑅 = {(𝑥1 ⋯ 𝑥𝑛) ∈ ℝ𝑛:
1

𝑛
∑ 𝑥𝑖 > 𝑐 𝑖≤𝑛 }

rejection region. Find 𝑐 to have test size of 𝛼,

then 𝛼 = ℙ (
1

𝑛
∑ 𝑥𝑖 ≥ 𝑐𝑖≤𝑛 |𝐻0) = ℙ(𝑥̅ ≥ 𝑐|𝐻0)

= ℙ(√𝑛𝑥̅ ≥ √𝑛𝑐|𝐻0) = ℙ(𝑧 ≥ √𝑛𝑐|𝐻0) =

1 − Φ(√𝑛𝑐), then 𝑐 =
1

√𝑛
Φ−1(1 − 𝛼).

Power under 𝐻1 is ℙ (
1

𝑛
∑ 𝑥𝑖 ≥ 𝑐𝑖≤𝑛 |𝐻1) =

ℙ(𝑥̅ ≥ 𝑐|𝐻1) = ℙ(√𝑛(𝑥̅ − 1) ≥ √𝑛(𝑐 − 1)|𝐻1)

= ℙ(𝑧 > √𝑛(𝑐 − 1)|𝐻0) = 1 − Φ (√𝑛(𝑐 − 1)).

7. P-value (example)

𝐻0: 𝜃 ∈ Θ0, 𝐻1: 𝜃 ∈ Θ1. For every 𝛼 ∈ (0,1),

we have a size 𝛼 test with rejection 𝑅𝛼. Let

𝑥𝑛 = {𝑥1 … 𝑥𝑛} be the realization of a sample

𝑋𝑛 = {𝑋1 … 𝑋𝑛}, then p-value = inf {𝛼: 𝑥𝑛 ∈
𝑅𝛼}. Suppose reject 𝐻0 iff 𝑇(𝑋𝑛) ≥ 𝑐𝛼, then

p-value = sup
𝜃∈Θ0

ℙ(𝑇(𝑋𝑛) ≥ 𝑇(𝑥𝑛)), 𝑥𝑛 is

observed from 𝑋𝑛. If Θ0 = {𝜃0}, then p-value

= ℙ𝜃0
(𝑇(𝑋𝑛) ≥ 𝑇(𝑥𝑛)).

XII. Supplemental Tips

1. Common Trig Identity and Derivatives
sin(0) = 0, cos(0) = 1, tan(0) = 0, sin′(𝑥) = cos(𝑥),

cos′(𝑥) = − sin(𝑥), (√𝑥)
′

=
1

2√𝑥
, (𝑒𝑎𝑥)′ = 𝑎𝑒𝑎𝑥,

σ′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)) sigmoid, (
1

𝑥
)

′
= −

1

𝑥2
.

2. CRF & Softmax
∑ (score(𝒕(𝑘), 𝒘(𝑘)) − log ∑ exp (score(𝒕′, 𝒘(𝑘)))𝒕′∈𝑇𝑁)𝐾

𝑘=1 =

∑ (score(𝒕(𝑘), 𝒘(𝑘)) − 𝑇 log ∑
exp(score(𝒕′,𝒘(𝑘)))

𝑇𝒕′∈𝑇𝑁)𝐾
𝑘=1 . As

𝑇 → 0, ∑ (score(𝒕(𝑘), 𝒘(𝑘)) − max
𝑡′∈𝑇𝑁

score(𝒕′, 𝒘(𝑘)))𝐾
𝑘=1 .

Becomes structured perception update rule if

minibatch size and learning rate are 1.

3. Common Semirings

Boolean: ⟨{0,1},∨,∧ ,0,1⟩ recognition; Viterbi:

⟨[0,1], max,× ,0,1⟩ prob of best derivation;

Inside: ⟨ℝ+ ∪ {∞}, +,× ,0,1⟩ prob of a string;

Real: ⟨ℝ ∪ {∞}, min, +, ∞, 0⟩ shortest

distance; Tropical: ⟨ℝ+ ∪ {∞}, min, +, ∞, 0⟩
shortest distance with non-negative weights;

Counting: ⟨ℕ, +,× 0,1⟩ number of paths.

4. Kleene Star of a Semiring

∀𝑥 ∈ 𝐴, (1) 𝑥∗ =⊕𝑛=0
∞ 𝑥𝑛, (2) 𝑥∗ = 𝟏 ⊕ 𝑥 ⊗

𝑥∗, (3) 𝑥∗ = 𝟏 ⊕ 𝑥∗ ⊗ 𝑥. Note: 𝑥0 = 𝟏.

5. Linear Indexed Grammar (LIG)

𝐺 = ⟨𝒩, 𝑆, 𝐼, Σ, ℛ⟩, where 𝒩 is non-terminals

(e.g., 𝑁, 𝑆, 𝑇); 𝑆 is start non-terminal; 𝐼 is

finite set of indices (e.g., 𝑓, 𝑔, ℎ); Σ is

alphabet; ℛ is set of production rule in one of

the forms: (1) 𝑁[𝜎] → 𝛼𝑀[𝜎]𝛽, (2) 𝑁[𝜎] =
𝛼𝑀[𝑓𝜎]𝛽, (3) 𝑁[𝑓𝜎] → 𝛼𝑀[𝜎]𝛽. For copying

(e.g., abcabc) and mirroring (e.g., abccba), the

indices 𝐼 must be chosen from Σ. Example:

{𝑎𝑛𝑏𝑛#𝑐𝑛𝑑𝑛|𝑛 ≥ 0}, 𝑆[𝜎] → 𝑎𝑆[𝜎𝑓]𝑑,

𝑆[𝜎] → 𝑇[𝜎], 𝑇[𝜎𝑓] → 𝑏𝑇[𝜎]𝑐, 𝑇[] → #.

6. WFSA and n-gram

𝑝(𝑤1 … 𝑤𝑀) = ∏ 𝑝(𝑤𝑚|𝑤𝑚−1 … 𝑤𝑚−𝑛+1)𝑀
𝑚=1

the number of states is 𝑂(|𝑉|𝑛−1), where 𝑛 is

n-gram, |𝑉| is vocabulary size.

7. Determinant, Eigenvector, Eigenvalue

det (
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

) = 𝑎(𝑒𝑖 − 𝑓ℎ) − 𝑏(𝑑𝑖 − 𝑓𝑔) + 𝑐(𝑑ℎ − 𝑒𝑔).

Given 𝐴𝑛×𝑛 a matrix and 𝑣𝑛×1 eigenvector,

𝐴𝑣 = 𝜆𝑣, 𝜆 is eigenvalue, a scalar.

8. Transformer and Attention Complexity

Using dot-product 𝜶(𝑡) = softmax (
𝒒𝑡

𝑇𝐾

√ℎ
), with

𝒙𝑡 ∈ ℝℎ, we define 𝒒𝑡 = 𝑊𝑞𝒙𝑡, 𝐾 = 𝑊𝐾𝑋, 𝑑

the context window. We have 𝒄(𝑡) = 𝜶(𝑡)𝑉𝑡 =

softmax (
𝒒𝑡𝐾𝑇

√ℎ
) 𝑉𝑡, 𝑡 ∈ [1, ⋯ , 𝑛], 𝒒𝑡 ∈ ℝ1×ℎ,

𝑋 ∈ ℝ𝑛×ℎ, 𝑊𝑞 , 𝑊𝑘 , 𝑊𝑣 ∈ ℝℎ×ℎ, 𝐾𝑡, 𝑉𝑡 ∈ ℝ𝑑×ℎ.

Then 𝑄, 𝐾, 𝑉 = 𝑋𝑊{𝑞,𝑘,𝑣} ∈ ℝ𝑛×ℎ → 𝑶(𝒏𝒉𝟐),

𝜶(𝑡)𝑉𝑡 ∈ ℝ1×ℎ → 𝑶(𝒏𝒉𝒅), 𝑛 comes from 𝑡.

9. Transformer Parameters Count

𝑉 vocabulary, 𝐸 embedding, embedding has

𝑉𝐸. Positional encoding has 𝐿𝐸, 𝐿 is

sequence length. Multi-head attention

(𝑄, 𝐾, 𝑉) has 3𝐸2, bias 3𝐸, projection weight

and bias 𝐸2 + 𝐸, total 4𝐸2 + 4𝐸. FFN has

8𝐸2 + 5𝐸, where forward has 4𝐸2 + 4𝐸,

projection has 4𝐸2 + 𝐸. Normalization 4𝐸.

10. Sentiment Analysis

Classifying utterances according to how they

make the interlocutor feel, e.g., movie review,

spam detection, recommender system, etc. (1)

Embedding: map words/tokens to vectors that

encode semantic meaning (one-hot, skip-gram,

BERT, ELMo). (2) Pooling: aggregate token

vectors into a fixed-size representation for

classification (mean, max, sum pooling). (3)

Backprop. (4) Softmax. Note: Skip-gram

𝑝(𝑐|𝑤) =
1

𝑍(𝑤)
exp{ewrd(𝑤) ⋅ ectx(𝑤)}, two outputs -

{ewrd(𝑤)}𝑤∈𝑉 and {ectx(𝑤)}𝑤∈𝑉, 𝑉 is the set of

word types in corpus, e(𝑤) ∈ ℝ𝑑, 𝑂(𝑘𝐶).

def Floyd-WarshallMatrixMultiplication(𝐴, 𝐵):
 𝑊1 be adjacency matrix of paths of length 1
 for each vertex 𝑘 in 𝑁:
 𝑊𝑘 = 0
 for each vertex 𝑘 in 𝑁:
 𝑊𝑘 = 𝑊𝑘 ⊕ (𝑊𝑘−1 ⊗ 𝑊1)
 return 𝑊𝑘

def SemiringMatrixMultiplication(𝐴, 𝐵):
 𝐴 and 𝐵 be square matrices of 𝑁 × 𝑁
 𝐶 be an empty 𝑁 × 𝑁 matrix
 for 𝑛 from 1 to 𝑁:

for 𝑝 from 1 to 𝑁:
 sum ← 𝟎
 for 𝑚 from 1 to 𝑁:
 sum ← sum ⊕ 𝐴[𝑛][𝑚] ⊗ 𝐵[𝑚][𝑝]
 𝐶[𝑛][𝑝] ← sum

 return 𝐶

def Floyd-Warshall(𝐺):
 𝑊 be a 𝑁 × 𝑁 adjacency matrix of graph 𝐺
 𝑑 be a 𝑁 × 𝑁 array of minimum distance to ∞
 for each edge (𝑢, 𝑣):
 𝑑[𝑢][𝑣] ← 𝑊[𝑢][𝑣]
 for each vertex 𝑣:
 𝑑[𝑣][𝑣] ← 0
 for 𝑘 from 1 to 𝑁:

for 𝑖 from 1 to 𝑁:
 for 𝑗 from 1 to 𝑁:
 if 𝑑[𝑖][𝑗] > 𝑑[𝑖][𝑘] + 𝑑[𝑘][𝑗]:
 𝑑[𝑖][𝑗] ← 𝑑[𝑖][𝑘] + 𝑑[𝑘][𝑗]

 return 𝑑

def Lehmann(𝑊):
 𝑊 be a 𝑁 × 𝑁 array of minimum distance 0
 for each edge (𝑢, 𝑣):
 𝑊[𝑢][𝑣] ← 𝑊[𝑢][𝑣]
 for each vertex 𝑣:
 𝑊[𝑣][𝑣] ← 𝑊[𝑣][𝑣]
 for 𝑘 from 1 to 𝑁:

for 𝑖 from 1 to 𝑁:
 for 𝑗 from 1 to 𝑁:
 𝑊[𝑖][𝑗] ← 𝑊[𝑖][𝑗] ⊕ (𝑊[𝑖][𝑗] ⊗ 𝑊[𝑘][𝑘]∗ ⊗ 𝑊[𝑘][𝑗])

 return 𝑊

Lehmann with

tropical semiring is

Floyd-Warshall

