1. Backpropagation
1. Log (In) and Exp Operations
e’=1,e°->0,In1=0,lne=1.

e*-e¥=e*Y | In(x-y)=lnx+Iny

e*/e?Y =e*Y | In(x/y)=Inx—Iny

(e*)Y = e In(x¥) =ylnx

eln¥ =y In(e*) =x

I1. Log-Linear Models
1. Exponential Family

p(x|0) = mh(x)eg (™) where Z(0) is

partition function, h(x) determines supports,
6 is canonical parameters, ¢ (x) is sufficient
statistics, finite.

2. Log-Linear Models

POylx,0) = ;55?7 CV, xeX, y ey,

feature f: X X Y € RX, parameters 8 € R¥.

Z(0) = Yyrey ee'f(x'y'), O0(]Y|) computation.

3. Softmax

softmax(h,y,T) = 5 'Ehy”
y'ey

hy =8 f(x,),

temperature T € R, T — oo uniform, T — 0
argmax (annealing).

II1. Multilayer Perceptron (MLP)

1. Multilayer Perceptron (MLP)

AN = U(N)(W(N) ...0(2)(W(2)0(1)(W(l)e(x)))),
h™ e RIY!, activation o®, W™ g RIYIdn,
W® e R¥'% encoding e(x) € R%. Then,

. _ exp(hy) o )
MLP is p(y|x) = Terexplig) = softmax(h'™, y).

MLP is a log-linear model, where we also
learn the feature f. Final layer is a softmax.

n_r/T>
oy

2. XOR Problem y = a;x; + ayx, + b
X | % |y Not linearly separable (a
0l0 [0 single-layer MLP can’t
0|1 1 solve). Use activations:
110 | 1| tanh(x)=20(2x)—1or
1|1 |0 sigmoid o (x) =

1+exp(x)’
IV. Language Models: n-grams and RNNs
1. Language Modeling

Alphabet X is a finite, non-empty set of
symbols. A string over X is finite sequence of
alphabet symbols. Kleene closure X* is the
set of all possible strings.

2. Globally Normalized Language Models
p(y) — %escore(y)’ 7 = Zy’e):* eSCOre(y’) is
the normalization constant, infinite sum, not
always computable; score:y - R.

3. Locally Normalized Language Models
Withy = y1y, ...yy and Yoy = y1¥2 - Yn-1,
p() = p(y:[BOS)p(y2|BOS 1) ... p(yn |y <n)p(EOS|y).

- Local normalization guarantees the
normalization constant to be 1

- The sum of the probability of all children
given their parent is 1.

- Every node has an EOS as a descendant.

4. Tightness

- Alocally normalized LM that sums to 1 is
called tight.

- A non-tight loses probability to infinitely
long structures - sequence models.

- To ensure tightness, force p(EOS|parent) >
& > 0 for every parent node with constant &.
S. n-gram Language Models

Assumption: limit the context to the previous
n — 1 symbols. A finite number of histories.
pely<e) = el Ve-ns1 - Ve-1), ¥ € E%,
() = p(EOS|Yeonsz - ¥e) [T=1 POVe|Vemnis o Veo1)-

6. Recurrent Neural Network (RNN)

eu(y: ht
e s u(ye)

is word embeddmg -

individual symbols, h; is

context embedding -

summarizes n — 1 symbols, f is RNN type

7. Vanilla / Elman RNN

Elman: h, = o(Uh,_, + Vu(y,_,) + by)

Variant: h, = c(W[h,_;; u(y;,_1)])

W € R¥24 U,V € R¥*? are recurrence

matrices, o is a non-linearity as in an MLP.

- Trained with backpropagation through time

(temporal hidden-state dependencies).

- Each timestamp yields an output and a

recurrent connection.

- Parameters are shared across timestamps.

- Unroll RNN first, then backpropagate.

8. LSTM, GRU, Vanishing / Exploding

Vanishing gradient - update < 1, exploding

gradient - update > 1. LSTM and GRU can

help solve the vanishing gradient problem

as they have cell state / gate update with

additive update. ReLU also works. Sigmoid

and Tanh can lead to vanishing gradient.

V. Part-of-speech Tagging with CRFs

1. Conditional Random Fields (CRF)
exp{score(t,w)

p(t|W) - ZtIETN e{xp{score(t}’,w)}’ score(t, W) =

YN score({tn_1,tn), W), t is part of speech

tagging, w is an input sentence, N = |w|.

e er expiscore((to, t1), W)} X (ther exp{score((ty, t,), w)} x

oo X (Soyer explscore({ty_s, ty), w)}) ). Score can be

chosen, consisting of transition (how likely

t, follows t;) and emission (how likely

current word is t,). Combinatorial assumption

2. Viterbi Algorithm (for shortest path)
def ViterbiAlgorithm(w,T,N):
for ty_, €T:
v(W, ty_1, N —1) « escore((ty_1,E0S)w)
for neN-2,..,1:
for t, €T:
v(W, ty,n) « max. escore({tntne) W) x (W, t,,q,n + 1)

pely<e) =

b(ty,n) « argmax eScre(tntnsd W) x v (w, t, .4, n + 1)
tns1 €T

v(w, BOS, 0) « max(v(w BOS, 0), e5core(BOStIW) 5 y(wy, ¢, 1))
b(BOS,0) « argmax(v(w BOS, 0), e5corelBOSLIW) x y(w, t,, 1))
t,ET

for n€e1l,..,N:
tn < b(tp-y,n— 1)
return t;y, v(w,BOS,0)

Replacing max with sum is Backward Algo.

Ll L}
The b in Viterbi is the backpointer for the best
scoring path. Overall complexity O(N|T|?).
Can generalize the algorithm with semirings.
3. Semirings
A semiring R = (4,®,R),0, 1) must satisfy:
- (4,®,0) is a commutative monoid;
- (4,®,1) is a monoid;
- @ distributes over @: Va, b,c € A,
(@®b)Q®c=@Rc)DBR),c®
@®h=>CRa)d(b);
- 0 is annihilator of ®: 0 Qa=a ® 0 = 0.
VI. Context-Free Parsing with CKY
1. Context-Free Grammar (CFG)
A context-free grammar G is a quadruple
(N, S, &, R) consisting of:
- A finite set of non-terminal symbols V',
- A distinguished start non-terminal symbol S;
- An alphabet of terminal symbols X;
- A set of production rules R of the form N —
a,where N € N and a € (W U X)*.
2. Probabilistic CFGs (PCFG)
p(tree) = [Iyen aevus)- P(N = a). PCFGs
are locally normalized. For all rules with the
same left-hand side, e.g., N = ay, ..., N = ay,
the sum of probability must be 1.
3. Weighted CFGs (WCFG)
exp{score(tree)} = [Iyen aevus)- exp{score(N - a)}.
WCFGs are globally normalized, i.e., p(t) =
%Hrst exp{score(r)}, Z = Luer[lmecexplscore(r)}, T
is countably infinite.
4. Chomsky Normal Form (CNF)
A grammar is in CNF is all productions have
the form: (1) N; = N,N3, N 5 5 are non-
terminals; (2) N = «, N is a non-terminal,
and « is a terminal; (3) S — ¢, S is start
symbol and € is empty string. With CNF, we
can partition the WCFG into non-terminal
production and terminal production.

5. Cocke-Kasami-Younger (CKY)
def SemiringCKY(s,(XV,S,%,R),score):
N« |s|
chart « 0
for n=1,..,N:
for X > s, ER:
chart[n,n + 1,X] ®=
for span=2,..,N:
for i=1,. N—span+1:
kei+ span
for j=i+1,..,k—1:
for X>YZEeR:
chart[n, n + 1,X] @= e5°re*~>Y 2 @ chart[i, j, Y] ®
chartlj, k, Z]
return chart[n,N +1,5]

Replacing @ with + and @ with x will give
us the weighted CKYY. Complexity O (N3|R|),
N is sentence length, |R| is rule set size.

VII. Dependency Parsing with MTT

1. Dependency Trees

(1) Projective: no crossing arcs, related to
constituency. (2) Non-projective: crossing
arcs, related to discontinuous constituency.

2. Distributions Over Non-projective Trees

CKY requires CNF

escore(X-s,)

p(th) 1 qcnrc(t w) Z ZL rerw )eicolc(l w) score
presents the compatibility of the parse £ with
sentence w, T (w) is all admissible parses of
sentence w, N = |w| input sentence length.
Computing Z requires O(N"), spanning trees
NV¥=2 root constraint (N — 1)V=2. N¥=1 for
directed graphs, e.g., dependency parsing.
3. Edge-factored Assumption
score(t,w) = X jyee Score(i — j, w) + Seore(@w),
where 7 is the root according to the tree .
Edges are the first part of the sum. Probability
p(t|W) — %H(iﬁj)etescore(i,j,w) escore(r,w)’ 7 =
ZL’ET(W} H(iﬂ/)etl escore(i,j,w) escore(r,w)~
4. Matrix-Tree Theorem (MTT) O(N?)
Let Aij = escore(i,j,w)7 pj = escore(j,w)7 NT(G) — |le
(1) Graph Laplacian: L;; = —4;; if i # j,
Yk=i Aij otherwise. (2) Modified Graph
Laplacian: p; ifi = 1 (root), —A4;; if i # j,
Ykxi Ay otherwise. Now Z = |L| = det(L).
5. Chu-Liu-Edmonds Algorithm O (N?)
To find the best parse of a sentence
(maximum-weight spanning tree - MST),
argmaxyer (i j)ee Score(i, j, w).
def MST(G):

if CYCLE IN GREEDY(G):

return
EXPAND(CONSTRAIN(MST(CONTRACT(G,CYCLE))))

def CONSTRAIN(G):
if NUMBER OF ROOT EDGES(GREEDY(G)) > 1:
e« ROOT EDGE TO REMOVE (G)
if CYCLE IN GREEDY(G —e):
return CONSTRAIN(CONTRACT(G,CYCLE))
else:
return CONSTRAIN(G —e)
else:
return GREEDY(G)

For a cycle C, we have (1) exit edges
emanating from C, (2) enter edges pointing
to C, (3) dead edges inside or both ends in C,
(4) external edges are outside C.

VIII. Semantic Parsing with CCG

1. Principle of Compositionality

The meaning of a complex express is a
function of the meanings of that expression’s
constituent parts.

2. Lambda Calculus

If M is a term, x is a variable, Ax. M is a term,
which takes x as input and produces M.
Scope: ((Ax. Ay. (x((Ax. x x)y))Ax. x)Z).

(1) a-conversion

Renaming a variable in a lambda term,
together with all occurrences, e.g.,

Ax. Ay (x((Ax. x x)y)) = Az. Ay (z((Ax. x 2)y)).
(2) B-reduction

Applying one lambda term to another, e.g.,
Ay. (z((Ax.x 2)y)) = Ay.(2(z y)).
Warning: repeatedly applying -reductions
may not terminate (F F) - (Ax. ((x x)x)F) -
((FF)F) = ((F F)F)F) »

(3) Logical constants

- Objects & relations: ALEX, MOSKVA,
LIKES, TEACHER, etc.

- Arity of relations: LIKES(x, y) has arity 2,
TEACHER(x) has arity 1, etc.

(4) Variables: uppercase (P, Q, etc.) for
relations, lowercase (x, y, etc.) for objects.
(5) Literals: Applying relations to objects or
variables, e.g., LIKES(LEE, BOB),
TEACHER(BOB), LIKES(LEE, y), P(LEE,
BOB), P(x, y), etc.

Note: With these we can construct logical
terms with logical connectives and
quantifiers. Can also form lambda terms.

3. Combinatory Categorical Grammars
Use CCG to deal with context-sensitive
grammars and cross serial dependencies.

What states border Texas
(S/(S\NP))/N N (S\NP)/NP NP
Af-Ag-Aw. f(z) h (=) Aa.state(a) Az. Ay borders(y,x) tewas
S/(S\NP) ’ (S\NP)

Ag. Az. state(z) A g(zx) Ay. borders(y, texas)

Az. state(z) A birders[a:, tezas)
(1) Definition: A CCG is (Vy, Vy, S, f, R),
where V. is finite set of terminals (lexicon),
Vy is finite site of non-terminals (atomic
categories), S € Vy a distinguished category,
f maps V- U {€} to finite subsets of C(Vy),
set of categories, R is combinatory rules.
(2) Combinatory rules: forward (x/y) is
y — x, backward y is (x\y) - x.
Note: CCG in higher-order composition
rules, each rule may give infinite instances.
CFGs have a finite set of non-terminals.
4. Parsing CCGs (CKY style)
One inference rule for every forward rule

DY LB jk) ,X/YYB = Xf. Axioms have

XB,ik
the form [X,i,i + 1] for each mput Wl+1
w Wy wy Wy Wy Wy
401 [BL2 |CVAF2.3 | [E/H\C,1,5 [F/G\E,56) G.u.i H.7,8)

[S/E.0.7]

[50:8]
IX. Machine Translation Transformers
1. Sequence-to-sequence Models

Model the probability distribution p(y|x)

over all strings y € Y for some sentence x,

i.e., what is the most likely translation y of

string x. Maximizing the log-likelihood

argmaxg YN, log p(y(i) |x@; 0) =

argmaxg Y0 Zly llogp(y[(i) |x(‘),y(<l) H).
p(-]x)

pllxw) pl1%p,10)

X
2. The Attention Mechanism
(1) Definition




mnm
The attention mechanism enables a model to
attend to information from different time
steps, @ = softmax(score(q,K)), ¢ = aV,
where q is the query, K is the keys, V is the
values, c is the resulting context.
(2) Variations of Attention Mechanisms
(i) Cross-attention Without projection: q, =
hi;K;=v;,=h{,i€l--n;K=V=H®°.
With linear projection (W, W, W, € R**9):
q: = ;’XVI/qd;kl-zthW,f;vizth
Wi, K=H¢XWSV=HXWSfi€l-n
(ii) Self-attention Without projection: q; =
Lki\=D;=hi,iel--n/mK=V=
H?. With linear projection: q; = hi X W’;
X Wg; vy = hi XxW,5; K =H® X
HSxWS;i€l-n;s€{ed}.
Note: n|is input length; m is output length (in

Output
Probabiities

Nx

attention Positional Positional
Encoding Encoding
D: masked o ‘ 9
« ZACORLY input [ Output
olf. L

attention, i
decoder, position
after curreng,time stamp cannot be attended.
E: cross-attention, allows decoder to attend
encoder.

F: feed-forward layers, linear projections
followed by non-linearities.

G: residual connection, in both encoder and
decoder, passes input to next layer without
transformation, help with vanishing gradients.
H: layer normalization, mean 0, variance 1.
4. Decoding Strategies

O(|Z|™) due to non-markovian structure y;.
(1) Beam search (TopK): Pruned breadth-
first search where the breadth is limited to
size k. Maximum of k paths kept at each time
step. Greedy, no guarantee.

(2) Sampling (TopP): Sample according to
the conditional distribution p(y|x) at each
time step. Sample only from top items that
cover p% of probability mass.

X. Transliteration with WFSTs

1. Finite-State Automata

Outputs
(shifted right)

Inputs

Determines if a string is an element of a given
language. AFSA A isa 5-tuple (£, Q, I, F, )
where X is alphabet, Q is a finite set of
states, I C Q is the set of initial states, F C
Q is the set of final or accepting states, § S
Q x (Z U {e}) x Q is a finite multi-set.
Unambiguous if for every string s € Z* there
is at most 1 accepting path for that s.

Note: Vertices are the states in Q, edges are
transitions in &, edge labels correspond to
input symbol in X.

2. Weighted Finite-State Automata

A WFSA A over a Y

semiring W = (K,®
,,0,1) is
(%,Q,1,F,6,1,p)
where in addition
toFSA,§ €Q x(ZU
{e}) X K X Q is a finite multi-set of
transitions, 1: Q — K an initial weighting
function over Q, p: Q — K a final weighting
function over Q, I = {q € Q|A(q) # 0} and
F ={q € Qlp(q) + 0}.

3. Path

A path m is an element of §* with consecutive
transitions (q; =7 gz, Gne1 =7 qn).
p(1) = q4 is the origin, n(m) = qy is the
destination. The length is the number of
transitions |7r|. The yield of a path is the
concatenation of the input symbols on the
edges along the path s(7r). A path 7 is a cycle
if the starting and ending states are the same.
4. Weighted Finite-State Transducers

A WFST T over a semiring W = (K,®,&
,0,1)is(Z,0,Q,1,F, 8, A, p) where X is
finite input alphabet, (1 is finite output
alphabet, Q is finite set of states, | € Q is
initial states, F € Q is final states, § S
Qx(u{eh) x (QU{e}) x K x Q finite
multi-set of transitions, A: Q — K initial
weighting function over Q, p: Q — K final
weighting function over Q

e 6/0.5

e s €/0.5 ﬁ a

oz vy SILILLIN AN
Ay

5. Composition of WFSTs

Composition 73 o T, of two WFSTs 7; =
(Z,Q,01, 11, F1, 8,41, p1) and T, =
(£,0,Q4,15, F,, 8,5, 15, p,) is the WFST T =
(£,0,Q,1,F,68,2,p) such that T (x,y) =
@zeﬂ.* :Ti(xf.}’) ® 7‘2(ny)

6. Pathsum

A be a WFSA over a semiring W = (K,®,®
,0,1). The pathsum in A is defined as

Z(A) =@ ren(a) w(m). Pathsum between
two states ¢, m € Q as Z(qn, qm) =
Dren(gn,gm) W). Inner path weight w; ()

aq/w- a W,
_,1/1q1... _)N/NqN

ofapath m = q, qn-1
is w; () =@®N_, w,,. w(7) is the path weight
as w(m) = A(p(m) ® w; (1) X p(n(m)).

7. WEST Log-Linear Model

plx) = *e{“‘"e“’ 2} = *Znen(x ¥) eZntyscore(ta),
where Z = 3, 1cq- e, needs algorithms.

8. Lehmann’s Algorlthm 0(N3)
def Lehmann(W):
W be a NxN array of minimum distance ©
for each edge (w,v):
W] « Wlu][v]
for each vertex v:
Wvllv] « Wv][v]
for k from 1 to N:
for i from 1 to N:
for j from 1 to N:
WIil] < wlillj] @ W] @ wWkl[k]" ® WIk][])
return W
9. Floyd-Warshall Algorithm O (N?)
def Floyd-Warshall(G):
W be a NxN adjacency matrix of graph G
d be a NxN array of minimum distance to o
for each edge (w,v):
dlu][v] « Wu][v]
for each vertex v:
d[v][v] < 0

Lehmann with
tropical semiring is
for k from 1 to N:  F]gyd-Warshall
for i from 1 to N:
for j from 1 to N:
if d[illj] > dlillk] + d[k][j]:
d[i][j] < dlil[k] + d[k][j]
return d

10. Semiring Matrix Multiplication O (N?®)
def SemiringMatrixMultiplication(4,B):
A and B be square matrices of NxN

C be an empty N xN matrix

for n from 1 to N:

for p from 1 to N:
sum <0
for m from 1 to N:
sum < sum @ A[n][m]® B[m][p]

Cln][p] « sum

return C

11. Floyd-Warshall Matrix Multiplication
def Floyd-WarshallMatrixMultiplication(4,B):
W' be adjacency matrix of paths of length 1
for each vertex k in N:
wk=0
for each vertex k in N:
wk=wk@ (w1 @w?)
return Wk
XI. Axes of Modeling
1. Maximum Likelihood Estimation
L(0) = — Yi<nlogp(yilx;, 0), the negative
log-likelihood. The MLE minimizes E[(6 —
0*)?] asn — 0. Can yield the lowest KL-
divergence. Fast. Warning: MLE can only be
computed for probabilistic models, and if N is
not sufficient, high variance and overfitting.

2. Parameter Estimation (MLE examples!
Gaussian: p(x|y,0) = ﬁe -3y’ JLL =
~Nlog(0) — log(2m) — ZXiL,(x — W% 5 > u =

1 .
ileu 60 = [y Zii( — )2 Poisson:

LL=-n8 + X~ x; -log(8) — XN, log(x;! ), W -
= ﬁ2z=1 ;-

3. (Weight) Regularization

- Lasso: £, (6) = L(0) + 1]|6]|,, makes

many coefficients to be 0. No closed form

solution.

- Ridge (L2): £,,(0) = L(6) + ||6]]3,
shrinks parameters to small non-zero values.
Closed form: 8 = (XTX + AD)™1XTy.

4. Bayesian Inference and Bayes Rule
Bayesian inference involves a prior,
likelihood, and posterior p(6|xy, ..., X,) &

p(xq, ..., x,|0) - p(6). Bayes rule: P(A|B) =

P(B|A)P(A)
P(B)

Bayesian is preferred over MLE.

5. Model Evaluation

Loss functions can be directly optimized

during training; evaluation metrics may

include any aspect of the model.

- Curve scores: AUC-ROC, AUC-PRC

(precision-recall curve).

- Confusion matrix: precision =

TP/Predicted condition positive (PCP), recall

=TP/CP, accuracy = TP + TN/ N, etc.

recision-recall

B Fﬁ score: Fﬁ = (1 + ﬂz) ﬁfprecision+recall
6. Hypothesis Testing (example
Given X; -+ X, ~ N(6,1) i.i.d.,, test Hy: 8 =
0,H;:0=1.R= {(xl---xn) € ]R":%Zisnxi > c}
rejection region. Find c to have test size of a,
then a = P(iZignxi >c ‘HO) = P(x > c|H,)
= P(Vnx = Vnc|H,) = P(z = Vnc|H,) =
1 — ®(Vnc), then ¢ = %@*(1 —a).
Power under H; is P (%ZM X, = c|H, )
P(% = c|H,) = P(Vn(x — 1) = Vn(c — 1|H,)
=P(z > Va(c — D|H,) = 1- & (Va(c - 1)).
7. P-value (example
Hy:0 € 0y, H;: 6 € 0,. Forevery a € (0,1),
we have a size a test with rejection R,. Let

= {x; ... x,,} be the realization of a sample
X™ = {X; ... X,,}, then p-value = inf {a: x™ €
R, }. Suppose reject Hy iff T(X™) = ¢, then
p-value = Bsél(f P(T(X™) = T(x™)), x™

. Note: When having a strong prior,

observed from X™. If ©, = {6,}, then p-value
= Py, (T(X™) > T(x™)).
XII. Supplemental Tips
1. Common Trig Identity and Derivatives
sin(0) = 0, cos(0) =1, tan(O) =0, sin’(x) = cos(x),
cos'(x) = —sin(x), (\/E)’ 2‘/_, (€™ = ge®,

1

o'(x) = 0(x)(1 - 0(x)) sigmoid, (1) = - L.
2. CRF & Softmax

YK, (score(t("),w(")) —logYyern exp (score(t’,w(")))) =
K <sc0re(t("),w(")) —TlogYrern M) As
T-0,%r, (score(t("),w(")) - max score(t’,w(k))).
Becomes structured perception update rule if
minibatch size and learning rate are 1.
Boolean: ({0,1},v,A,0,1) recognition; Viterbi:
([0,1], max,x ,0,1) prob of best derivation;
Inside: (R* U {00}, +,%,0,1) prob of a string;

Real: (R U {oo}, min, +, o0, 0) shortest
distance; Tropical: (R* U {co}, min, +, o0, 0)
shortest distance with non-negative weights;
Counting: (N, +,x 0,1) number of paths.
4. Kleene Star of a Semiring
Vx €A )X =Ppox", Q)x* =1PxQ
x5, x =10 x* ® x. Note: x° =
5. Linear Indexed Grammar (LIG)
G =(N,S,1,%, R), where V' is non-terminals
(e.g., N, S, T); S is start non-terminal; [ is
finite set of indices (e.g., f, g, h); Z is
alphabet; R is set of production rule in one of
the forms: (1) N[o] - aM[ad]B, (2) N[o] =
aM[fo]B, (3) N[fa] —» aM|[a]B. For copying
(e.g., abcabc) and mirroring (e.g., abccba), the
indices / must be chosen from X. Example:
{a™b™#c"d™|n = 0}, S[o] = aS[of]d,
Sla] - T[o], Tlof] - bT[o]c, T[] - #.
6. WEFSA and n-gram
PWy .wy) = [T=s PWin [Win—1 o Win—ns1)
the number of states is O (|V|*1), where n is
n-gram, |V| is vocabulary size.
7. Determinant, Eigenvector, Eigenvalue

a b c
det <d e f> =a(ei — fh) — b(di— fg) + c(dh — eg).

g h i
Given A, x, a matrix and v, eigenvector,
Av = Av, A is eigenvalue, a scalar.
8. Transformer and Attention Complexity

Using dot-product a® = softmax (q«tf ) with

x; € R", we define q, = Wyx,, K = WX, d
the context window. We have ¢ = a®V, =
softmax( N )Vt, t €[1,--,n], q; € R*"
X € R™M W, Wy, W, € R K, V, € RO,
Then Q, K,V = XWq sy € R™" > 0(nh?),
a®y, € R™" - 0(nhd), n comes from t.
9. Transformer Parameters Count

V vocabulary, E embedding, embedding has
VE. Positional encoding has LE, L is
sequence length. Multi-head attention
(Q,K,V) has 3E2, bias 3E, projection weight
and bias E2 + E, total 4E? + 4E. FFN has
8E? + 5E, where forward has 4E? + 4E,
projection has 4E2 + E. Normalization 4E.
10. Sentiment Analysis

Classifying utterances according to how they
make the interlocutor feel, e.g., movie review,
spam detection, recommender system, etc. (1)
Embedding: map words/tokens to vectors that
encode semantic meaning (one-hot, skip-gram,
BERT, ELMo). (2) Pooling: aggregate token
vectors into a fixed-size representation for
classification (mean, max, sum pooling). (3)
Backprop (4) Softmax. Note: Skip-gram
p(clw) = Zw) ——exp{ewra(W) - ecx(W)}, tWo outputs -
{ewraW)}wer and {ecex(W)}wey, V is the set of
word types in corpus, e(w) € R%, 0 (kC).




